LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Mechanistic and functional versatility of radical SAM enzymes.

Booker, Squire J / Grove, Tyler L

F1000 biology reports

2010  Volume 2, Page(s) 52

Abstract: Enzymes of the radical SAM (RS) superfamily catalyze a diverse assortment of reactions that proceed ... a universal and obligate intermediate among enzymes within this class. A bioinformatics study that appeared ... clusters; RS enzymes catalyzing reactions with compelling medical implications; and the energetics and ...

Abstract Enzymes of the radical SAM (RS) superfamily catalyze a diverse assortment of reactions that proceed via intermediates containing unpaired electrons. The radical initiator is the common metabolite S-adenosyl-l-methionine (SAM), which is reductively cleaved to generate a 5'-deoxyadenosyl 5'-radical, a universal and obligate intermediate among enzymes within this class. A bioinformatics study that appeared in 2001 indicated that this superfamily contained over 600 members, many catalyzing reactions that were rich in novel chemical transformations. Since that seminal study, the RS superfamily has grown immensely, and new details about the scope of reactions and biochemical pathways in which its members participate have emerged. This review will highlight only a few of the most significant findings from the past 2-3 years, focusing primarily on: RS enzymes involved in complex metallocofactor maturation; characterized RS enzymes that lack the canonical CxxxCxxC motif; RS enzymes containing multiple iron-sulfur clusters; RS enzymes catalyzing reactions with compelling medical implications; and the energetics and mechanism of generating the 5'-deoxyadenosyl radical. A number of significant studies of RS enzymes will unfortunately be omitted, and it is hoped that the reader will access the relevant literature - particularly a number of superb review articles recently written on the subject - to acquire a deeper appreciation of this class of enzymes.
Language English
Publishing date 2010-07-14
Publishing country England
Document type Journal Article
ISSN 1757-594X
ISSN (online) 1757-594X
DOI 10.3410/B2-52
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top