LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation.

Mori, Yasuo / Takahashi, Nobuaki / Polat, Onur Kerem / Kurokawa, Tatsuki / Takeda, Norihiko / Inoue, Masahiro

Pflugers Archiv : European journal of physiology

2015  Volume 468, Issue 1, Page(s) 85–97

Abstract: ... channels are discussed regarding hypoxia-sensing function in ischemic cell death. Also, ubiquitous ... that are formed by transient receptor potential (TRP) proteins have been characterized as exquisite sensors ... discuss how redox-sensitive TRP channels such as TRPA1 have recently emerged as sensors of the relatively ...

Abstract Regulation of ion channels is central to the mechanisms that underlie immediate acute physiological responses to changes in the availability of molecular oxygen (O2). A group of cation-permeable channels that are formed by transient receptor potential (TRP) proteins have been characterized as exquisite sensors of redox reactive species and as efficient actuators of electric/ionic signals in vivo. In this review, we first discuss how redox-sensitive TRP channels such as TRPA1 have recently emerged as sensors of the relatively inert oxidant O2. With regard to the physiological significance of O2 sensor TRP channels, vagal TRPA1 channels are mainly discussed with respect to their role in respiratory regulation in comparison with canonical pathways in glomus cells of the carotid body, which is a well-established O2-sensing organ. TRPM7 channels are discussed regarding hypoxia-sensing function in ischemic cell death. Also, ubiquitous expression of TRPA1 and TRPM7 together with their physiological relevance in the body is examined. Finally, based upon these studies on TRP channels, we propose a hypothesis of "O2 remodeling." The hypothesis is that cells detect deviation of O2 availability from appropriate levels via sensors and adjust local O2 environments in vivo by controlling supply and consumption of O2 via pathways comprising cellular signals and transcription factors downstream of sensors, which consequently optimize physiological functions. This new insight into O2 adaptation through ion channels, particularly TRPs, may foster a paradigm shift in our understanding in the biological significance of O2.
MeSH term(s) Adaptation, Physiological ; Animals ; Carotid Body/metabolism ; Humans ; Oxidation-Reduction ; Oxygen/metabolism ; TRPC Cation Channels/genetics ; TRPC Cation Channels/metabolism
Chemical Substances TRPC Cation Channels ; Oxygen (S88TT14065)
Language English
Publishing date 2015-07-07
Publishing country Germany
Document type Journal Article ; Research Support, Non-U.S. Gov't ; Review
ZDB-ID 6380-0
ISSN 1432-2013 ; 0031-6768
ISSN (online) 1432-2013
ISSN 0031-6768
DOI 10.1007/s00424-015-1716-2
Shelf mark
Uc I Zs.35: Show issues Location:
Je nach Verfügbarkeit (siehe Angabe bei Bestand)
bis Jg. 2021: Bestellungen von Artikeln über das Online-Bestellformular
ab Jg. 2022: Lesesaal (EG)
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top