LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Matching biomedical ontologies based on formal concept analysis.

    Zhao, Mengyi / Zhang, Songmao / Li, Weizhuo / Chen, Guowei

    Journal of biomedical semantics

    2018  Volume 9, Issue 1, Page(s) 11

    Abstract: ... ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence ... Methods: We propose a method based on Formal Concept Analysis to identify and validate mappings across ... Analysis formalism in ontology matching tasks. Five types of formal contexts are constructed incrementally ...

    Abstract Background: The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies.
    Methods: We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified.
    Results: Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign demonstrates the effectiveness of FCA-Map and its competitiveness with the top-ranked systems. FCA-Map can achieve a better balance between precision and recall for large-scale domain ontologies through constructing multiple FCA structures, whereas it performs unsatisfactorily for smaller-sized ontologies with less lexical and semantic expressions.
    Conclusions: Compared with other FCA-based OM systems, the study in this paper is more comprehensive as an attempt to push the envelope of the Formal Concept Analysis formalism in ontology matching tasks. Five types of formal contexts are constructed incrementally, and their derived concept lattices are used to cluster the commonalities among classes at lexical and structural level, respectively. Experiments on large, real-world domain ontologies show promising results and reveal the power of FCA.
    MeSH term(s) Algorithms ; Biological Ontologies ; Phenotype ; Vocabulary, Controlled
    Language English
    Publishing date 2018-03-19
    Publishing country England
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 2548651-2
    ISSN 2041-1480 ; 2041-1480
    ISSN (online) 2041-1480
    ISSN 2041-1480
    DOI 10.1186/s13326-018-0178-9
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Matching biomedical ontologies based on formal concept analysis

    Mengyi Zhao / Songmao Zhang / Weizhuo Li / Guowei Chen

    Journal of Biomedical Semantics, Vol 9, Iss 1, Pp 1-

    2018  Volume 27

    Abstract: ... ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence ... Methods We propose a method based on Formal Concept Analysis to identify and validate mappings across ... complex mappings can be identified. Results Evaluation on the Anatomy, the Large Biomedical Ontologies ...

    Abstract Abstract Background The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. Methods We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Results Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign demonstrates the ...
    Keywords Ontology matching ; Formal concept analysis ; Concept lattice ; Computer applications to medicine. Medical informatics ; R858-859.7
    Subject code 006
    Language English
    Publishing date 2018-03-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top