LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion.

    Fu, Tingxiong / Lv, Xiuwei / Kong, Qingzhi / Yuan, Changjing

    Oncotarget

    2017  Volume 8, Issue 33, Page(s) 54809–54820

    Abstract: SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important ... ...

    Abstract SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
    Language English
    Publishing date 2017-08-15
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2560162-3
    ISSN 1949-2553 ; 1949-2553
    ISSN (online) 1949-2553
    ISSN 1949-2553
    DOI 10.18632/oncotarget.18957
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Development and optimization of sustained release triptolide microspheres.

    Zeng, Hui-Lin / Qiu, Qian / Fu, Ting-Xiong / Deng, Ai-Ping / Xie, Xiang-Yang

    PloS one

    2023  Volume 18, Issue 10, Page(s) e0292861

    Abstract: Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f., is considered to have promising potential for clinical use in ... ...

    Abstract Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f., is considered to have promising potential for clinical use in treating rheumatoid arthritis. However, its clinical application has been limited by the narrow therapeutic window, side effects associated with plasma drug fluctuations, low oral bioavailability, and poor patient compliance with the long and frequent dosing regimen. An extended drug release preparation may address these limitations. The aim of this work was therefore to develop, formulate and optimize sustained release triptolide microspheres with poly (lactide-co-glycolide) (PLGA). Triptolide-loaded microspheres were prepared using PLGA as the matrix polymer, dichloromethane as the oil phase, and polyvinyl alcohol (PVA) as the matrix forming emulsifier. An oil-in-water (O/W) emulsion solvent evaporation technique was utilized to prepare the microspheres. Surface response methodology (RSM) coupled with central composite design (CCD) was used to optimize the formulation and a total of twenty formulations were prepared. PVA concentration (X1), PLGA concentration (X2), and theoretical drug content (X3) were selected as independent variables; and drug content (Y1), encapsulation efficiency (Y2), mean diameter (Y3) and the initial release during the first day (Y4) were taken as the response variables. The optimized formulation showed mean diameter of 42.36 μm, drug content of 7.96%, encapsulation efficiency of 80.16% and an initial release of 14.48%. The prepared microspheres exhibited a sustained release profile of triptolide in vitro over 4 weeks, which was wellfitted with a Korsmeyer-Peppas equation. However, the initial drug release (~14%) of triptolide-loaded microspheres was very high and should be specifically investigated in future studies. The results indicate that long-term sustained release microspheres of triptolide can be considered a strategy to overcome the low bioavailability and poor patient compliance with conventional triptolide tablets. The issue of initial burst release and in vivo evaluations should be specifically investigated in the future.
    MeSH term(s) Humans ; Delayed-Action Preparations ; Microspheres ; Particle Size ; Arthritis, Rheumatoid
    Chemical Substances Delayed-Action Preparations ; triptolide (19ALD1S53J)
    Language English
    Publishing date 2023-10-19
    Publishing country United States
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 2267670-3
    ISSN 1932-6203 ; 1932-6203
    ISSN (online) 1932-6203
    ISSN 1932-6203
    DOI 10.1371/journal.pone.0292861
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top