LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 3067

Search options

  1. Article: Pathogenesis of Two Faces of DVT: New Identity of Venous Thromboembolism as Combined Micro-Macrothrombosis via Unifying Mechanism Based on "Two-Path Unifying Theory" of Hemostasis and "Two-Activation Theory of the Endothelium".

    Chang, Jae C

    Life (Basel, Switzerland)

    2022  Volume 12, Issue 2

    Abstract: Venous thrombosis includes deep venous thrombosis (DVT), venous thromboembolism (VTE), venous microthrombosis and others. Still, the pathogenesis of each venous thrombosis is not clearly established. Currently, isolated distal DVT and multiple proximal/ ... ...

    Abstract Venous thrombosis includes deep venous thrombosis (DVT), venous thromboembolism (VTE), venous microthrombosis and others. Still, the pathogenesis of each venous thrombosis is not clearly established. Currently, isolated distal DVT and multiple proximal/central DVT are considered to be the same macrothrombotic disease affecting the venous system but with varying degree of clinical expression related to its localization and severity. The genesis of two phenotypes of DVT differing in clinical features and prognostic outcome can be identified by their unique hemostatic mechanisms. Two recently proposed hemostatic theories in vivo have clearly defined the character between "microthrombi" and "macrothrombus" in the vascular system. Phenotypic expression of thrombosis depends upon two major variables: (1) depth of vascular wall damage and (2) extent of the injury affecting the vascular tree system. Vascular wall injury limited to endothelial cells (ECs) in sepsis produces "disseminated" microthrombi, but intravascular injury due to trauma extending from ECs to subendothelial tissue (SET) produces "local" macrothrombus. Pathogen-induced sepsis activates the complement system leading to generalized endotheliopathy, which releases ultra large von Willebrand factor (ULVWF) multimers from ECs and promotes ULVWF path of hemostasis. In the venous system, the activated ULVWF path initiates microthrombogenesis to form platelet-ULVWF complexes, which become "microthrombi strings" that produce venous endotheliopathy-associated vascular microthrombotic disease (vEA-VMTD) and immune thrombocytopenic purpura (ITP)-like syndrome. In the arterial system, endotheliopathy produces arterial EA-VMTD (aEA-VMTD) with "life-threatening" thrombotic thrombocytopenic purpura (TTP)-like syndrome. Typically, vEA-VMTD is "silent" unless complicated by additional local venous vascular injury. A local venous vessel trauma without sepsis produces localized macrothrombosis due to activated ULVWF and tissue factor (TF) paths from damaged ECs and SET, which causes distal DVT with good prognosis. However, if a septic patient with "silent" vEA-VMTD is complicated by additional vascular injury from in-hospital vascular accesses, "venous combined micro-macrothrombosis" may develop as VTE via the unifying mechanism of the "two-path unifying theory" of hemostasis. This paradigm shifting pathogenetic difference between distal DVT and proximal/central DVT calls for a reassessment of current therapeutic approaches.
    Language English
    Publishing date 2022-01-31
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2662250-6
    ISSN 2075-1729
    ISSN 2075-1729
    DOI 10.3390/life12020220
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Molecular Pathogenesis of Endotheliopathy and Endotheliopathic Syndromes, Leading to Inflammation and Microthrombosis, and Various Hemostatic Clinical Phenotypes Based on "Two-Activation Theory of the Endothelium" and "Two-Path Unifying Theory" of Hemostasis.

    Chang, Jae C

    Medicina (Kaunas, Lithuania)

    2022  Volume 58, Issue 9

    Abstract: Endotheliopathy, according to the "two-activation theory of the endothelium", can be triggered by the activated complement system in critical illnesses, such as sepsis and polytrauma, leading to two distinctly different molecular dysfunctions: (1) the ... ...

    Abstract Endotheliopathy, according to the "two-activation theory of the endothelium", can be triggered by the activated complement system in critical illnesses, such as sepsis and polytrauma, leading to two distinctly different molecular dysfunctions: (1) the activation of the inflammatory pathway due to the release of inflammatory cytokines, such as interleukin 6 and tumor necrosis factor-α, and (2) the activation of the microthrombotic pathway due to the exocytosis of hemostatic factors, such as ultra-large von Willebrand factor (ULVWF) multimers and FVIII. The former promotes inflammation, including inflammatory organ syndrome (e.g., myocarditis and encephalitis) and multisystem inflammatory syndrome (e.g., cytokine storm), and the latter provokes endotheliopathy-associated vascular microthrombotic disease (VMTD), orchestrating thrombotic thrombocytopenic purpura (TTP)-like syndrome in arterial endotheliopathy, and immune thrombocytopenic purpura (ITP)-like syndrome in venous endotheliopathy, as well as multiorgan dysfunction syndrome (MODS). Because the endothelium is widely distributed in the entire vascular system, the phenotype manifestations of endotheliopathy are variable depending on the extent and location of the endothelial injury, the cause of the underlying pathology, as well as the genetic factor of the individual. To date, because the terms of many human diseases have been defined based on pathological changes in the organ and/or physiological dysfunction, endotheliopathy has not been denoted as a disease entity. In addition to inflammation, endotheliopathy is characterized by the increased activity of FVIII, overexpressed ULVWF/VWF antigen, and insufficient ADAMTS13 activity, which activates the ULVWF path of hemostasis, leading to consumptive thrombocytopenia and microthrombosis. Endothelial molecular pathogenesis produces the complex syndromes of inflammation, VMTD, and autoimmunity, provoking various endotheliopathic syndromes. The novel conceptual discovery of in vivo hemostasis has opened the door to the understanding of the pathogeneses of many endotheliopathy-associated human diseases. Reviewed are the hemostatic mechanisms, pathogenesis, and diagnostic criteria of endotheliopathy, and identified are some of the endotheliopathic syndromes that are encountered in clinical medicine.
    MeSH term(s) Endothelium/metabolism ; Endothelium/pathology ; Hemostasis ; Hemostatics ; Humans ; Inflammation ; Interleukin-6 ; Phenotype ; Thrombosis/pathology ; Tumor Necrosis Factor-alpha ; Vascular Diseases ; von Willebrand Factor/metabolism
    Chemical Substances Hemostatics ; Interleukin-6 ; Tumor Necrosis Factor-alpha ; von Willebrand Factor
    Language English
    Publishing date 2022-09-19
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2188113-3
    ISSN 1648-9144 ; 1010-660X
    ISSN (online) 1648-9144
    ISSN 1010-660X
    DOI 10.3390/medicina58091311
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on "Two-Path Unifying Theory" of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy.

    Chang, Jae C

    Vascular health and risk management

    2021  Volume 17, Page(s) 273–298

    Abstract: COVID-19 sepsis is characterized by acute respiratory distress syndrome (ARDS) as a consequence of pulmonary tropism of the virus and endothelial heterogeneity of the host. ARDS is a phenotype among patients with multiorgan dysfunction syndrome (MODS) ... ...

    Abstract COVID-19 sepsis is characterized by acute respiratory distress syndrome (ARDS) as a consequence of pulmonary tropism of the virus and endothelial heterogeneity of the host. ARDS is a phenotype among patients with multiorgan dysfunction syndrome (MODS) due to disseminated vascular microthrombotic disease (VMTD). In response to the viral septicemia, the host activates the complement system which produces terminal complement complex C5b-9 to neutralize pathogen. C5b-9 causes pore formation on the membrane of host endothelial cells (ECs) if CD59 is underexpressed. Also, viral S protein attraction to endothelial ACE2 receptor damages ECs. Both affect ECs and provoke endotheliopathy. Disseminated endotheliopathy activates two molecular pathways: inflammatory and microthrombotic. The former releases inflammatory cytokines from ECs, which lead to inflammation. The latter initiates endothelial exocytosis of unusually large von Willebrand factor (ULVWF) multimers and FVIII from Weibel-Palade bodies. If ADAMTS13 is insufficient, ULVWF multimers activate intravascular hemostasis of ULVWF path. In activated ULVWF path, ULVWF multimers anchored to damaged endothelial cells recruit circulating platelets and trigger microthrombogenesis. This process produces "microthrombi strings" composed of platelet-ULVWF complexes, leading to endotheliopathy-associated VMTD (EA-VMTD). In COVID-19, microthrombosis initially affects the lungs per tropism causing ARDS, but EA-VMTD may orchestrate more complex clinical phenotypes, including thrombotic thrombocytopenic purpura (TTP)-like syndrome, hepatic coagulopathy, MODS and combined micro-macrothrombotic syndrome. In this pandemic, ARDS and pulmonary thromboembolism (PTE) have often coexisted. The analysis based on two hemostatic theories supports ARDS caused by activated ULVWF path is EA-VMTD and PTE caused by activated ULVWF and TF paths is macrothrombosis. The thrombotic disorder of COVID-19 sepsis is consistent with the notion that ARDS is virus-induced disseminated EA-VMTD and PTE is in-hospital vascular injury-related macrothrombosis which is not directly  related to viral pathogenesis. The pathogenesis-based therapeutic approach is discussed for the treatment of EA-VMTD with antimicrothrombotic regimen and the potential need of anticoagulation therapy for coinciding macrothrombosis in comprehensive COVID-19 care.
    MeSH term(s) COVID-19/complications ; COVID-19/epidemiology ; Endothelial Cells/metabolism ; Fibrinolytic Agents/therapeutic use ; Hemostasis/physiology ; Humans ; Pandemics ; Phenotype ; SARS-CoV-2 ; Sepsis/complications ; Sepsis/metabolism ; Thrombosis/drug therapy ; Thrombosis/etiology ; Thrombosis/metabolism
    Chemical Substances Fibrinolytic Agents
    Language English
    Publishing date 2021-06-01
    Publishing country New Zealand
    Document type Journal Article ; Review
    ZDB-ID 2186568-1
    ISSN 1178-2048 ; 1176-6344
    ISSN (online) 1178-2048
    ISSN 1176-6344
    DOI 10.2147/VHRM.S299357
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article ; Online: Pathogenesis of Two Faces of DVT

    Jae C. Chang

    Life, Vol 12, Iss 220, p

    New Identity of Venous Thromboembolism as Combined Micro-Macrothrombosis via Unifying Mechanism Based on “Two-Path Unifying Theory” of Hemostasis and “Two-Activation Theory of the Endothelium”

    2022  Volume 220

    Abstract: Venous thrombosis includes deep venous thrombosis (DVT), venous thromboembolism (VTE), venous microthrombosis and others. Still, the pathogenesis of each venous thrombosis is not clearly established. Currently, isolated distal DVT and multiple proximal/ ... ...

    Abstract Venous thrombosis includes deep venous thrombosis (DVT), venous thromboembolism (VTE), venous microthrombosis and others. Still, the pathogenesis of each venous thrombosis is not clearly established. Currently, isolated distal DVT and multiple proximal/central DVT are considered to be the same macrothrombotic disease affecting the venous system but with varying degree of clinical expression related to its localization and severity. The genesis of two phenotypes of DVT differing in clinical features and prognostic outcome can be identified by their unique hemostatic mechanisms. Two recently proposed hemostatic theories in vivo have clearly defined the character between “microthrombi” and “macrothrombus” in the vascular system. Phenotypic expression of thrombosis depends upon two major variables: (1) depth of vascular wall damage and (2) extent of the injury affecting the vascular tree system. Vascular wall injury limited to endothelial cells (ECs) in sepsis produces “disseminated” microthrombi, but intravascular injury due to trauma extending from ECs to subendothelial tissue (SET) produces “local” macrothrombus. Pathogen-induced sepsis activates the complement system leading to generalized endotheliopathy, which releases ultra large von Willebrand factor (ULVWF) multimers from ECs and promotes ULVWF path of hemostasis. In the venous system, the activated ULVWF path initiates microthrombogenesis to form platelet-ULVWF complexes, which become “microthrombi strings” that produce venous endotheliopathy-associated vascular microthrombotic disease (vEA-VMTD) and immune thrombocytopenic purpura (ITP)-like syndrome. In the arterial system, endotheliopathy produces arterial EA-VMTD (aEA-VMTD) with “life-threatening” thrombotic thrombocytopenic purpura (TTP)-like syndrome. Typically, vEA-VMTD is “silent” unless complicated by additional local venous vascular injury. A local venous vessel trauma without sepsis produces localized macrothrombosis due to activated ULVWF and tissue factor (TF) paths from damaged ECs and SET, ...
    Keywords combined micro-macrothrombosis ; deep vein thrombosis ; endotheliopathy ; hemostasis ; immune thrombocytopenic purpura ; macrothrombosis ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article: Disseminated intravascular coagulation: new identity as endotheliopathy-associated vascular microthrombotic disease based on in vivo hemostasis and endothelial molecular pathogenesis.

    Chang, Jae C

    Thrombosis journal

    2020  Volume 18, Page(s) 25

    Abstract: Disseminated intravascular coagulation (DIC) can be correctly redefined as disseminated intravascular microthrombosis based on "two-path unifying theory" of in vivo hemostasis. "DIC" is a form of vascular microthrombotic disease characterized by " ... ...

    Abstract Disseminated intravascular coagulation (DIC) can be correctly redefined as disseminated intravascular microthrombosis based on "two-path unifying theory" of in vivo hemostasis. "DIC" is a form of vascular microthrombotic disease characterized by "microthrombi" composed of platelets and unusually large von Willebrand factor multimers (ULVWF). Microthrombotic disease includes not only "DIC", but also microthrombosis occurring in thrombotic thrombocytopenic purpura (TTP), TTP-like syndrome, and focal, multifocal and localized microthrombosis. Being a hemostatic disease, microthrombotic disease occurs as a result of lone activation of ULVWF path via partial in vivo hemostasis. In endothelial injury associated with critical illnesses such as sepsis, the vascular damage is limited to the endothelial cell and activates ULVWF path. In contrast, in intravascular traumatic injury, the local damage may extend from the endothelial cell to subendothelial tissue and sometimes beyond, and activates both ULVWF and tissue factor (TF) paths. When endotheliopathy triggers exocytosis of ULVWF and recruits platelets, ULVWF path is activated and promotes microthrombogenesis to produce microthrombi composed of microthrombi strings, but when localized vascular damage causes endothelial and subendothelial tissue damage, both ULVWF and TF paths are activated and promote macrothrombogenesis to produce macrothrombus made of complete "blood clots". Currently, "DIC" concept is ascribed to activated TF path leading to fibrin clots. Instead, it should be correctly redefined as microthrombosis caused by activation of ULVWF path, leading to endotheliopathy-associated microthrombosis. The correct term for acute "DIC" is disseminated microthrombosis-associated hepatic coagulopathy, and that for chronic "DIC" is disseminated microthrombosis without hepatic coagulopathy. TTP-like syndrome is hematologic phenotype of endotheliopathy-associated microthrombosis. This correct concept of "DIC" is identified from novel theory of "
    Keywords covid19
    Language English
    Publishing date 2020-10-14
    Publishing country England
    Document type Journal Article ; Review
    ZDB-ID 2118392-2
    ISSN 1477-9560
    ISSN 1477-9560
    DOI 10.1186/s12959-020-00231-0
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article ; Online: Stroke Classification: Critical Role of Unusually Large von Willebrand Factor Multimers and Tissue Factor on Clinical Phenotypes Based on Novel "Two-Path Unifying Theory" of Hemostasis.

    Chang, Jae C

    Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis

    2020  Volume 26, Page(s) 1076029620913634

    Abstract: Stroke is a hemostatic disease associated with thrombosis/hemorrhage caused by intracranial vascular injury with spectrum of clinical phenotypes and variable prognostic outcomes. The genesis of different phenotypes of stroke is poorly understood due to ... ...

    Abstract Stroke is a hemostatic disease associated with thrombosis/hemorrhage caused by intracranial vascular injury with spectrum of clinical phenotypes and variable prognostic outcomes. The genesis of different phenotypes of stroke is poorly understood due to our incomplete understanding of hemostasis and thrombosis. These shortcomings have handicapped properly recognizing each specific stroke syndrome and contributed to controversy in selecting therapeutic agents. Treatment recommendation for stroke syndromes has been exclusively derived from the result of laborious and expensive clinical trials. According to newly proposed "two-path unifying theory" of in vivo hemostasis, intracranial vascular injury would yield several unique stroke syndromes triggered by 3 distinctly different thrombogenetic mechanisms depending upon level of intracranial intravascular injury and character of formed blood clots. Five major phenotypes of stroke occur via thrombogenetic paths: (1) transient ischemic attack due to focal endothelial damage limited to endothelial cells (ECs), (2) acute ischemic stroke due to localized ECs and subendothelial tissue (SET) damage extending up to the outer vascular wall, (3) thrombo-hemorrhagic stroke due to localized vascular damage involving ECs and SET and extending beyond SET to extravascular tissue, (4) acute hemorrhagic stroke due to major localized intracranial hemorrhage/hematoma into the brain tissue or space between the coverings of the brain associated with vascular anomaly or obtuse trauma, and (5) encephalopathic stroke due to disseminated endotheliopathy leading to microthrombosis within the brain. New classification of stroke phenotypes would assist in selecting rational therapeutic regimen for each stroke syndrome and designing clinical trials to improve clinical outcome.
    MeSH term(s) Female ; Hemostasis ; Humans ; Male ; Phenotype ; Stroke/classification ; Thromboplastin/metabolism ; von Willebrand Factor/metabolism
    Chemical Substances von Willebrand Factor ; Thromboplastin (9035-58-9)
    Language English
    Publishing date 2020-06-25
    Publishing country United States
    Document type Journal Article
    ZDB-ID 1237357-6
    ISSN 1938-2723 ; 1076-0296
    ISSN (online) 1938-2723
    ISSN 1076-0296
    DOI 10.1177/1076029620913634
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article ; Online: Complement-Induced Endotheliopathy-Associated Vascular Microthrombosis in Coronavirus Disease 2019.

    Hawley, H Bradford / Chang, Jae C

    The Journal of infectious diseases

    2021  Volume 223, Issue 12, Page(s) 2198–2199

    MeSH term(s) COVID-19 ; Complement Activation ; Complement System Proteins ; Humans ; SARS-CoV-2 ; Thrombosis
    Chemical Substances Complement System Proteins (9007-36-7)
    Language English
    Publishing date 2021-03-11
    Publishing country United States
    Document type Journal Article ; Comment
    ZDB-ID 3019-3
    ISSN 1537-6613 ; 0022-1899
    ISSN (online) 1537-6613
    ISSN 0022-1899
    DOI 10.1093/infdis/jiab136
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  8. Article: Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease.

    Chang, Jae C

    Thrombosis journal

    2019  Volume 17, Page(s) 10

    Abstract: In addition to protective "immune response", sepsis is characterized by destructive "endothelial response" of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes ... ...

    Abstract In addition to protective "immune response", sepsis is characterized by destructive "endothelial response" of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form "microthrombi". These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
    Keywords covid19
    Language English
    Publishing date 2019-05-30
    Publishing country England
    Document type Journal Article ; Review
    ISSN 1477-9560
    ISSN 1477-9560
    DOI 10.1186/s12959-019-0198-4
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  9. Article ; Online: Acute Respiratory Distress Syndrome as an Organ Phenotype of Vascular Microthrombotic Disease: Based on Hemostatic Theory and Endothelial Molecular Pathogenesis.

    Chang, Jae C

    Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis

    2019  Volume 25, Page(s) 1076029619887437

    Abstract: Acute respiratory distress syndrome (ARDS) is a life-threatening noncardiogenic circulatory disorder of the lungs associated with critical illnesses such as sepsis, trauma, and immune and collagen vascular disease. Its mortality rate is marginally ... ...

    Abstract Acute respiratory distress syndrome (ARDS) is a life-threatening noncardiogenic circulatory disorder of the lungs associated with critical illnesses such as sepsis, trauma, and immune and collagen vascular disease. Its mortality rate is marginally improved with the best supportive care. The demise occurs due to progressive pulmonary hypoxia and multi-organ dysfunction syndrome (MODS) with severe inflammation. Complement activation is a part of immune response against pathogen or insult in which membrane attack complex (MAC) is formed and eliminates microbes. If complement regulatory protein such as endothelial CD59 is underexpressed, MAC may also cause pulmonary vascular injury to the innocent bystander endothelial cell of host and provokes endotheliopathy that causes inflammation and pulmonary vascular microthrombosis, leading to ARDS. Its pathogenesis is based on a novel "two-path unifying theory" of hemostasis and "two-activation theory of the endothelium" promoting molecular pathogenesis. Endotheliopathy activates two independent molecular pathways: inflammatory and microthrombotic. The former triggers the release inflammatory cytokines and the latter promotes exocytosis of unusually large von Willebrand factor multimers (ULVWF) and platelet activation. Inflammatory pathway initiates inflammation, but microthrombotic pathway more seriously produces "microthrombi strings" composed of platelet-ULVWF complexes, which become anchored on the injured endothelial cells, and causes disseminated intravascular microthrombosis (DIT). DIT is a hemostatic disease due to lone activation of ULVWF path without activated tissue factor path. It leads to endotheliopathy-associated vascular microthrombotic disease (EA-VMTD), which orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and MODS. Thrombotic thrombocytopenic purpura (TTP)-like syndrome is the hematologic phenotype of EA-VMTD. ARDS is one of organ phenotypes among MODS associated with TTP-like syndrome. The most effective treatment of ARDS can be achieved by counteracting the activated microthrombotic pathway based on two novel hemostatic theories.
    MeSH term(s) Endothelial Cells/metabolism ; Endothelial Cells/pathology ; Hemostatics ; Humans ; Phenotype ; Respiratory Distress Syndrome, Adult/complications ; Vascular Diseases/etiology ; Vascular Diseases/physiopathology
    Chemical Substances Hemostatics
    Keywords covid19
    Language English
    Publishing date 2019-11-27
    Publishing country United States
    Document type Journal Article
    ZDB-ID 1237357-6
    ISSN 1938-2723 ; 1076-0296
    ISSN (online) 1938-2723
    ISSN 1076-0296
    DOI 10.1177/1076029619887437
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  10. Article ; Online: Hemostasis based on a novel 'two-path unifying theory' and classification of hemostatic disorders.

    Chang, Jae C

    Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis

    2018  Volume 29, Issue 7, Page(s) 573–584

    Abstract: Hemostasis is the most important protective mechanism for human survival following harmful vascular damage caused by internal disease or external injury. Physiological mechanism of hemostasis is partially understood. Hemostasis can be initiated by ... ...

    Abstract : Hemostasis is the most important protective mechanism for human survival following harmful vascular damage caused by internal disease or external injury. Physiological mechanism of hemostasis is partially understood. Hemostasis can be initiated by either intravascular injury or external bodily injury involving two different levels of damage [i.e., limited to the endothelium or combined with extravascular tissue (EVT)]. In intravascular injury, traumatic damage limited to local endothelium typically is of no consequence, but disease-induced endothelial damage associated with systemic endothelial injury seen in sepsis and other critical illnesses could cause generalized 'endotheliopathy'. It triggers no bleeding but promotes serious endothelial molecular response. If intravascular local trauma extends beyond the endothelium and into EVT, it causes intravascular 'bleeding' and initiate 'clotting' via normal hemostasis. In external bodily injury, local traumatic damage always extends to the endothelium and EVT, and triggers 'bleeding' and 'clotting'. Systemic endotheliopathy activates only unusually large von Willebrand factor multimers (ULVWF) path and mediates 'microthrombogenesis', producing 'microthrombi' strings. This partial activation of hemostasis with ULVWF path leads to vascular microthrombotic disease. But localized traumatic injury extending to the endothelium and EVT activates both ULVWF and tissue factor paths. Combined activation of ULVWF and tissue factor paths provides normal hemostasis in external bodily injury, but causes 'macrothrombus' formation in intravascular injury. This 'two-path unifying theory' concept succinctly elucidates simplified nature of hemostasis in intravascular and external bodily injuries. It also clarifies different pathogenesis of every hemorrhagic disease and thrombotic disorder related to internal vascular disease and external vascular injury.
    MeSH term(s) Blood Vessels/injuries ; Endothelium, Vascular/injuries ; Hemostasis/physiology ; Hemostatic Disorders/classification ; Humans ; Thromboplastin/metabolism ; von Willebrand Factor/metabolism
    Chemical Substances von Willebrand Factor ; Thromboplastin (9035-58-9)
    Language English
    Publishing date 2018-08-25
    Publishing country England
    Document type Journal Article ; Review
    ZDB-ID 1033551-1
    ISSN 1473-5733 ; 0957-5235
    ISSN (online) 1473-5733
    ISSN 0957-5235
    DOI 10.1097/MBC.0000000000000765
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top