LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 28

Search options

  1. Article: Hormonal Control of Blood Viscosity.

    Sloop, Gregory D / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2024  Volume 16, Issue 2, Page(s) e55237

    Abstract: The hemodynamic milieu differs throughout the vascular tree because of varying vascular geometry and blood velocities. Accordingly, the risk of turbulence, which is dictated by the Reynolds and Dean numbers, also varies. Relatively high blood viscosity ... ...

    Abstract The hemodynamic milieu differs throughout the vascular tree because of varying vascular geometry and blood velocities. Accordingly, the risk of turbulence, which is dictated by the Reynolds and Dean numbers, also varies. Relatively high blood viscosity is needed to prevent turbulence in the left ventricle and aorta, where high-velocity blood changes direction several times. Low blood viscosity is needed in the capillaries, where erythrocytes pass through vessels with a diameter smaller than their own. In addition, higher blood viscosity is necessary when the cardiac output and peak blood velocity increase as a part of a sympathetic response or anemia, which occurs following significant hemorrhage. Blood viscosity, as reflected in systemic vascular resistance and vascular wall shear stress, is sensed, respectively, by cardiomyocyte stretching in the left ventricle and mechanoreceptors for wall shear stress in the carotid sinus. By controlling blood volume and red blood cell mass, the renin-aldosterone-angiotensin system and the systemic vascular resistance response control the hematocrit, the strongest intrinsic determinant of blood viscosity. These responses provide gross control of blood viscosity. Fine-tuning of blood viscosity in transient conditions is provided by hormonal control of erythrocyte deformability. The short half-life of some of these hormones limits their activity to specific vascular beds. Hormones that modulate blood viscosity include erythropoietin, angiotensin II, brain natriuretic factor, epinephrine, prostacyclin E2, antidiuretic hormone, and nitric oxide.
    Language English
    Publishing date 2024-02-29
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.55237
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: New Onset Anemia, Worsened Plasma Creatinine Concentration, and Hyperviscosity in a Patient With a Monoclonal IgM Paraprotein.

    Sloop, Gregory D / Moore, Cheryl / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2023  Volume 15, Issue 7, Page(s) e41657

    Abstract: A 76-year-old female followed closely for five years with IgM monoclonal gammopathy of uncertain significance developed anemia, worsened plasma creatinine concentration, and markedly elevated serum viscosity. This case illustrates the scope of pathology ... ...

    Abstract A 76-year-old female followed closely for five years with IgM monoclonal gammopathy of uncertain significance developed anemia, worsened plasma creatinine concentration, and markedly elevated serum viscosity. This case illustrates the scope of pathology that can be caused by elevated blood viscosity. Our patient's anemia was a homeostatic response to normalize systemic vascular resistance and resulted from activation of the systemic vascular resistance response. The elevated plasma creatinine resulted from decreased renal perfusion because of elevated blood viscosity. Recent insights in hemorheology (the study of blood flow) are discussed, namely the recent identification of preferential blood flow patterns and erythrocyte autoregulation of deformability. These insights confirm that blood viscosity is part of the "milieu intérieur."
    Language English
    Publishing date 2023-07-10
    Publishing country United States
    Document type Case Reports
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.41657
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article: From the Oligonucleotide purUUpurU to Cytokine Storm, Elevated Blood Viscosity, and Complications of Coronavirus Disease 2019.

    Sloop, Gregory D / Pop, Gheorghe A / Weidman, Joseph J / Moraru, Liviu / St Cyr, John A

    Cureus

    2022  Volume 14, Issue 6, Page(s) e25852

    Abstract: Background Coronavirus disease 2019 (COVID-19) can be associated with pathologic inflammation. The authors hypothesize that a high copy number of a purine-uridine-rich nucleotide motif is present in the genome of severe acute respiratory syndrome ... ...

    Abstract Background Coronavirus disease 2019 (COVID-19) can be associated with pathologic inflammation. The authors hypothesize that a high copy number of a purine-uridine-rich nucleotide motif is present in the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hyperactivates innate immunity. Methods The number of purine-uridine-uridine-purine-uridine (purUUpurU) motifs was counted in the genomes of SARS-CoV-2 and other single-strand RNA viruses. The nucleotides of SARS-CoV-2 in random order were used as a control. Results PurUUpurU occurred 2.8 times more often in the actual SARS-CoV-2 genome than the randomized genome. The number of purUUpurU motifs correlates with the potential severity of acute illness caused by these viruses, except for influenza A. Conclusion The large number of purUUpurU in SARS-CoV-2 may hyperactivate innate immunity, potentially causing the markedly increased concentrations of cytokines, acute phase reactants, and blood viscosity that can be seen in COVID-19.
    Language English
    Publishing date 2022-06-11
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.25852
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article: COVID-19 Demonstrates That Inflammation Is a Hyperviscous State.

    Sloop, Gregory D / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2022  Volume 14, Issue 10, Page(s) e30603

    Abstract: Many of the complications of severe coronavirus disease-2019 (COVID-19) are caused by blood hyperviscosity driven by marked hyperfibrinogenemia. This results in a distinctive hyperviscosity syndrome which affects areas of high and low shear. A change in ... ...

    Abstract Many of the complications of severe coronavirus disease-2019 (COVID-19) are caused by blood hyperviscosity driven by marked hyperfibrinogenemia. This results in a distinctive hyperviscosity syndrome which affects areas of high and low shear. A change in blood viscosity causes a threefold inverse change in blood flow, which increases the risk of thrombosis in both arteries and veins despite prophylactic anticoagulation. Increased blood viscosity decreases perfusion of all tissues, including the lungs, heart, and brain. Decreased perfusion of the lungs causes global ventilation-perfusion mismatch which results in silent hypoxemia and decreased efficacy of positive pressure ventilation in treating pulmonary failure in COVID-19. Increased blood viscosity causes a mismatch in oxygen supply and demand in the heart, resulting in myocarditis and ventricular diastolic dysfunction. Decreased perfusion of the brain causes demyelination because of a sublethal cell injury to oligodendrocytes. Hyperviscosity can cause stasis in capillaries, which can cause endothelial necrosis. This can lead to the rarefaction of capillary beds, which is noted in "long-COVID." The genome of the virus which causes COVID-19, severe acute respiratory syndrome coronavirus 2, contains an extraordinarily high number of the oligonucleotide virulence factor 5'-purine-uridine-uridine-purine-uridine-3', which binds to toll-like receptor 8, hyperactivating innate immunity. This can lead to a marked elevation in fibrinogen levels and an increased prevalence of neutrophil extracellular traps in pulmonary failure, as seen in COVID-19 patients.
    Language English
    Publishing date 2022-10-23
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.30603
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article: PurUUpurU: An Oligonucleotide Virulence Factor in RNA Viruses.

    Sohn, Won J / Sloop, Gregory D / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2022  Volume 14, Issue 9, Page(s) e29340

    Abstract: Background The copy number of the oligonucleotide 5'-purine-uridine-uridine-purine-uridine-3' (purUUpurU) motif in a viral genome was previously shown to correlate with the severity of acute illness. This study aimed to determine whether purUUpurU ... ...

    Abstract Background The copy number of the oligonucleotide 5'-purine-uridine-uridine-purine-uridine-3' (purUUpurU) motif in a viral genome was previously shown to correlate with the severity of acute illness. This study aimed to determine whether purUUpurU content correlates with virulence in other single-strand RNA (ssRNA) viruses that vary in clinical severity. Methodology We determined the copy number of purUUpurU in the genomes of two subtypes of human respiratory syncytial virus (RSV), respiratory syncytial virus A (RSV-A), and respiratory syncytial virus B (RSV-B), which vary in clinical severity. In addition, we determined the purUUpurU content of the four ebolaviruses that cause human disease, dengue virus, rabies virus, human rhinovirus-A, poliovirus type 1, astrovirus, rubella, yellow fever virus, and measles virus. Viral nucleotide sequence files were downloaded from the National Center for Biotechnology Information (NCBI)/National Institutes of Health website. In addition, we determined the cumulative case fatality rate of 20 epidemics of the Ebola virus and compared it with that of the other human ebolaviruses. Results The genomic purUUpurU content correlated with the severity of acute illness caused by both subtypes of RSV and human ebolaviruses. The lowest purUUpurU content was in the genome of the rubella virus, which causes mild disease. Conclusions The quantity of genomic purUUpurU is a virulence factor in ssRNA viruses. Blood hyperviscosity is one mechanism by which purUUpurU causes pathology. Comparative quantitative genomic analysis for purUUpurU will be helpful in estimating the risk posed by emergent ssRNA viruses.
    Language English
    Publishing date 2022-09-19
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.29340
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article: The Role of Blood Viscosity in Infectious Diseases.

    Sloop, Gregory D / De Mast, Quirijn / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2020  Volume 12, Issue 2, Page(s) e7090

    Abstract: Blood viscosity is increased by elevated concentrations of acute phase reactants and hypergammaglobulinemia in inflammation. These increase blood viscosity by increasing plasma viscosity and fostering erythrocyte aggregation. Blood viscosity is also ... ...

    Abstract Blood viscosity is increased by elevated concentrations of acute phase reactants and hypergammaglobulinemia in inflammation. These increase blood viscosity by increasing plasma viscosity and fostering erythrocyte aggregation. Blood viscosity is also increased by decreased erythrocyte deformability, as occurs in malaria. Increased blood viscosity contributes to the association of acute infections with myocardial infarction (MI), venous thrombosis, and venous thromboembolism. It also increases vascular resistance, which decreases tissue perfusion and activates stretch receptors in the left ventricle, thereby initiating the systemic vascular resistance response. This compensates for the increased vascular resistance by vasodilation, lowering hematocrit, and decreasing intravascular volume. This physiological response causes the anemias associated with malaria, chronic inflammation, and other chronic diseases. Since tissue perfusion is inversely proportional to blood viscosity, anemia may be beneficial as it increases tissue perfusion when erythrocyte aggregating factors or erythrocytes with decreased deformability are present in the blood.
    Language English
    Publishing date 2020-02-24
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.7090
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article ; Online: Perspective: interesterified triglycerides, the recent increase in deaths from heart disease, and elevated blood viscosity.

    Sloop, Gregory D / Weidman, Joseph J / St Cyr, John A

    Therapeutic advances in cardiovascular disease

    2018  Volume 12, Issue 1, Page(s) 23–28

    Abstract: The authors hypothesize that consumption of interesterified fats may be the cause of the continuous increase in cardiovascular deaths in the United States which began in 2011. Interesterification is a method of producing solid fats from vegetable oil and ...

    Abstract The authors hypothesize that consumption of interesterified fats may be the cause of the continuous increase in cardiovascular deaths in the United States which began in 2011. Interesterification is a method of producing solid fats from vegetable oil and began to supplant partial hydrogenation for this purpose upon recognition of the danger of trans fats to cardiovascular health. Long, straight carbon chains, as are present in saturated and trans fatty acids, decrease the fluidity of the erythrocyte cell membrane, which decreases erythrocyte deformability and increases blood viscosity. This decrease in cell membrane fluidity is caused by increased van der Waals interactions, which also solidify dietary fats. Elevated blood viscosity is favored as the pathogenic mechanism by which trans fats increase cardiovascular mortality because changes in lipoprotein levels do not account for all the mortality attributable to their consumption. The rapid changes in cardiovascular mortality noted with the introduction and withdrawal of trans fats from the food supply are reviewed. The evidence implicating elevated blood viscosity in cardiovascular disease is also reviewed. Data regarding the production and consumption of interesterified fats in the US should be released in order to determine if there is an association with the observed increase in cardiovascular deaths.
    MeSH term(s) Animals ; Blood Viscosity ; Dietary Fats/adverse effects ; Dietary Fats/blood ; Erythrocyte Membrane/drug effects ; Erythrocyte Membrane/metabolism ; Esterification ; Heart Failure/blood ; Heart Failure/diagnosis ; Heart Failure/mortality ; Humans ; Membrane Fluidity/drug effects ; Prognosis ; Risk Assessment ; Risk Factors ; Thrombosis/blood ; Thrombosis/diagnosis ; Thrombosis/mortality ; Time Factors ; Trans Fatty Acids/adverse effects ; Triglycerides/adverse effects ; Triglycerides/blood
    Chemical Substances Dietary Fats ; Trans Fatty Acids ; Triglycerides
    Language English
    Publishing date 2018-03-28
    Publishing country England
    Document type Journal Article ; Review
    ZDB-ID 2485062-7
    ISSN 1753-9455 ; 1753-9447
    ISSN (online) 1753-9455
    ISSN 1753-9447
    DOI 10.1177/1753944717745507
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  8. Article: Atherothrombosis is a Thrombotic, not Inflammatory Disease.

    Sloop, Gregory D / Weidman, Joseph J / St Cyr, John A

    Cureus

    2017  Volume 9, Issue 12, Page(s) e1909

    Abstract: The authors hypothesize that thrombosis causes both the complications of atherosclerosis as well as the underlying lesion, the atherosclerotic plaque, which develops from the organization of mural thrombi. These form in areas of slow blood flow, which ... ...

    Abstract The authors hypothesize that thrombosis causes both the complications of atherosclerosis as well as the underlying lesion, the atherosclerotic plaque, which develops from the organization of mural thrombi. These form in areas of slow blood flow, which develop because of flow separation created by changing vascular geometry and elevated blood viscosity. Many phenomena typically ascribed to inflammation or "chronic oxidative stress", such as the development of fatty streaks, "endothelial dysfunction," "vulnerable plaques," and the association of mild elevations of C-reactive protein and cytokines with atherothrombosis are better explained by hemorheologic and hemodynamic abnormalities, particularly elevated blood viscosity. Elevated blood viscosity decreases the perfusion of skeletal muscle, leading to myocyte expression of the myokine IL-6, decreased glucose uptake, insulin resistance, hyperglycemia, and metabolic syndrome. The hyperfibrinogenemia and hypergammaglobulinemia present in true inflammatory diseases foster atherothrombosis by increasing blood viscosity.
    Language English
    Publishing date 2017-12-05
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.1909
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  9. Article: Flawed Reasoning Allows the Persistence of Mainstream Atherothrombosis Theory.

    Sloop, Gregory D / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2018  Volume 10, Issue 3, Page(s) e2377

    Abstract: Deaths due to atherothrombosis are increasing throughout the world except in the lowest socio-demographic stratum. This is despite 60 years of study and expenditure of billions of dollars on lipid theory. Nevertheless, mainstream atherothrombosis theory ... ...

    Abstract Deaths due to atherothrombosis are increasing throughout the world except in the lowest socio-demographic stratum. This is despite 60 years of study and expenditure of billions of dollars on lipid theory. Nevertheless, mainstream atherothrombosis theory persists even though it has failed numerous tests. Contrary data are ignored, consistent with the practice of science as envisioned by Thomas Kuhn. This paper examines defects in mainstream atherogenesis theory and the flawed logic which allows its persistence in the face of what should be obvious shortcomings.
    Language English
    Publishing date 2018-03-27
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.2377
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  10. Article: Apolipoprotein(a) is the Product of a Pseudogene: Implications for the Pathophysiology of Lipoprotein(a).

    Sloop, Gregory D / Pop, Gheorghe / Weidman, Joseph J / St Cyr, John A

    Cureus

    2018  Volume 10, Issue 5, Page(s) e2715

    Abstract: Apolipoprotein(a) [apo(a)] is an apolipoprotein unique to lipoprotein(a) [Lp(a)]. Although it has no known function, Lp(a) is a risk factor for accelerated atherothrombosis. We hypothesize that LPA, the gene which encodes apo(a), is a heretofore ... ...

    Abstract Apolipoprotein(a) [apo(a)] is an apolipoprotein unique to lipoprotein(a) [Lp(a)]. Although it has no known function, Lp(a) is a risk factor for accelerated atherothrombosis. We hypothesize that LPA, the gene which encodes apo(a), is a heretofore unrecognized unprocessed pseudogene created by duplication of PLG, the gene which encodes plasminogen. Unprocessed pseudogenes are genes which were created by duplication of functional genes and subsequently lost function after acquiring various mutations. This hypothesis explains many of the unusual features of Lp(a) and apo(a). Also, this hypothesis has implications for the therapy of elevated Lp(a) and atherothrombosis theory. Because apo(a) is functionless, the diseases associated with elevated levels of Lp(a) are due to its impact on blood viscosity.
    Language English
    Publishing date 2018-05-31
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2747273-5
    ISSN 2168-8184
    ISSN 2168-8184
    DOI 10.7759/cureus.2715
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top