LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Non-Adherence Tree Analysis (NATA)-An adherence improvement framework: A COVID-19 case study.

    Edifor, Ernest Edem / Brown, Regina / Smith, Paul / Kossik, Rick

    PloS one

    2021  Volume 16, Issue 2, Page(s) e0247109

    Abstract: Poor medication adherence is a global phenomenon that has received a significant amount of research attention yet remains largely unsolved. Medication non-adherence can blur drug efficacy results in clinical trials, lead to substantial financial losses, ... ...

    Abstract Poor medication adherence is a global phenomenon that has received a significant amount of research attention yet remains largely unsolved. Medication non-adherence can blur drug efficacy results in clinical trials, lead to substantial financial losses, increase the risk of relapse and hospitalisation, or lead to death. The most common methods of measuring adherence are post-treatment measures; that is, adherence is usually measured after the treatment has begun. What the authors are proposing in this multidisciplinary study is a new technique for predicting the factors that are likely to cause non-adherence before or during medication treatment, illustrated in the context of potential non-adherence to COVID-19 antiviral medication. Fault Tree Analysis (FTA), allows system analysts to determine how combinations of simple faults of a system can propagate to cause a total system failure. Monte Carlo simulation is a mathematical algorithm that depends heavily on repeated random sampling to predict the behaviour of a system. In this study, the authors propose a new technique called Non-Adherence Tree Analysis (NATA), based on the FTA and Monte Carlo simulation techniques, to improve adherence. Firstly, the non-adherence factors of a medication treatment lifecycle are translated into what is referred to as a Non-Adherence Tree (NAT). Secondly, the NAT is coded into a format that is translated into the GoldSim software for performing dynamic system modelling and analysis using Monte Carlo. Finally, the GoldSim model is simulated and analysed to predict the behaviour of the NAT. NATA is dynamic and able to learn from emerging datasets to improve the accuracy of future predictions. It produces a framework for improving adherence by analysing social and non-social adherence barriers. Novel terminologies and mathematical expressions have been developed and applied to real-world scenarios. The results of the application of NATA using data from six previous studies in relation to antiviral medication demonstrate a predictive model which suggests that the biggest factor that could contribute to non-adherence to a COVID-19 antiviral treatment is a therapy-related factor (the side effects of the medication). This is closely followed by a condition-related factor (asymptomatic nature of the disease) then patient-related factors (forgetfulness and other causes). From the results, it appears that side effects, asymptomatic factors and forgetfulness contribute 32.44%, 22.67% and 18.22% respectively to discontinuation of medication treatment of COVID-19 antiviral medication treatment. With this information, clinicians can implement relevant interventions and measures and allocate resources appropriately to minimise non-adherence.
    MeSH term(s) COVID-19/drug therapy ; COVID-19/epidemiology ; COVID-19/prevention & control ; Chronic Disease ; Humans ; Medication Adherence ; Models, Theoretical ; SARS-CoV-2
    Language English
    Publishing date 2021-02-19
    Publishing country United States
    Document type Journal Article
    ISSN 1932-6203
    ISSN (online) 1932-6203
    DOI 10.1371/journal.pone.0247109
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Non-Adherence Tree Analysis (NATA)-An adherence improvement framework

    Ernest Edem Edifor / Regina Brown / Paul Smith / Rick Kossik

    PLoS ONE, Vol 16, Iss 2, p e

    A COVID-19 case study.

    2021  Volume 0247109

    Abstract: Poor medication adherence is a global phenomenon that has received a significant amount of research attention yet remains largely unsolved. Medication non-adherence can blur drug efficacy results in clinical trials, lead to substantial financial losses, ... ...

    Abstract Poor medication adherence is a global phenomenon that has received a significant amount of research attention yet remains largely unsolved. Medication non-adherence can blur drug efficacy results in clinical trials, lead to substantial financial losses, increase the risk of relapse and hospitalisation, or lead to death. The most common methods of measuring adherence are post-treatment measures; that is, adherence is usually measured after the treatment has begun. What the authors are proposing in this multidisciplinary study is a new technique for predicting the factors that are likely to cause non-adherence before or during medication treatment, illustrated in the context of potential non-adherence to COVID-19 antiviral medication. Fault Tree Analysis (FTA), allows system analysts to determine how combinations of simple faults of a system can propagate to cause a total system failure. Monte Carlo simulation is a mathematical algorithm that depends heavily on repeated random sampling to predict the behaviour of a system. In this study, the authors propose a new technique called Non-Adherence Tree Analysis (NATA), based on the FTA and Monte Carlo simulation techniques, to improve adherence. Firstly, the non-adherence factors of a medication treatment lifecycle are translated into what is referred to as a Non-Adherence Tree (NAT). Secondly, the NAT is coded into a format that is translated into the GoldSim software for performing dynamic system modelling and analysis using Monte Carlo. Finally, the GoldSim model is simulated and analysed to predict the behaviour of the NAT. NATA is dynamic and able to learn from emerging datasets to improve the accuracy of future predictions. It produces a framework for improving adherence by analysing social and non-social adherence barriers. Novel terminologies and mathematical expressions have been developed and applied to real-world scenarios. The results of the application of NATA using data from six previous studies in relation to antiviral medication demonstrate a predictive model which suggests that the biggest factor that could contribute to non-adherence to a COVID-19 antiviral treatment is a therapy-related factor (the side effects of the medication). This is closely followed by a condition-related factor (asymptomatic nature of the disease) then patient-related factors (forgetfulness and other causes). From the results, it appears that side effects, asymptomatic factors and forgetfulness contribute 32.44%, 22.67% and 18.22% respectively to discontinuation of medication treatment of COVID-19 antiviral medication treatment. With this information, clinicians can implement relevant interventions and measures and allocate resources appropriately to minimise non-adherence.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Stochastic adaptive-service level agreement-based energy management model for smart grid and prosumers.

    Ahmed, Waqar / Khan, Bilal / Ullah, Zahid / Mehmood, Faizan / Ali, Sahibzada Muhammad / Edifor, Ernest Edem / Siraj, Sajid / Nawaz, Raheel

    PloS one

    2022  Volume 17, Issue 12, Page(s) e0278324

    Abstract: The growing issue of demand-supply management between the prosumers and the local energy market requires an efficient and reliable energy management model. The microlayers, such as prosumers, energy districts, and macro players, namely retail dealers and ...

    Abstract The growing issue of demand-supply management between the prosumers and the local energy market requires an efficient and reliable energy management model. The microlayers, such as prosumers, energy districts, and macro players, namely retail dealers and wholesale dealers play a pivotal role in achieving mutual benefits. The stochastic nature of renewable energy generation in energy districts requires an effective model that can contemplate all stochastic complexities. Therefore, this paper proposes a mutual trade model between energy districts and smart grid to authorize the prosumers for mutual energy transactions under the stochastic adaptive-service level agreement. Moreover, multiple smart contacts are developed between the stakeholders to design adaptability and stochastic behavior of wind speed and solar irradiance. The real-time adaptations of the stochastic adaptive-service level agreement are based on technical beneficial feasibility and achieved through stochastic and adaptive functions. The optimized solution based on a genetic algorithm is proposed for the energy cost and energy surplus of prosumers and output parameters of the mutual trade model (grid revenue). In the context of mutual benefits associated with balanced demand and supply, the economic load dispatch and simplex method maximization are used for optimized demand-supply energy management. Moreover, the effectiveness of the proposed adaptive and stochastic mutual trade model is validated through simulation and statistical analysis.
    MeSH term(s) Renewable Energy ; Wind ; Computer Simulation ; Computer Systems
    Language English
    Publishing date 2022-12-13
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2267670-3
    ISSN 1932-6203 ; 1932-6203
    ISSN (online) 1932-6203
    ISSN 1932-6203
    DOI 10.1371/journal.pone.0278324
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top