LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 65

Search options

  1. Article ; Online: Downregulation of StAR driven neurosteroid biosynthesis as a distinctive feature in the brains of Alzheimer's disease patients.

    Manna, Pulak R / Bose, Chhanda / Reddy, P Hemachandra

    Biochimica et biophysica acta. Molecular basis of disease

    2023  Volume 1869, Issue 6, Page(s) 166757

    MeSH term(s) Humans ; Alzheimer Disease/genetics ; Brain/metabolism ; Down-Regulation ; Neurosteroids ; tau Proteins/metabolism
    Chemical Substances Neurosteroids ; tau Proteins ; steroidogenic acute regulatory protein
    Language English
    Publishing date 2023-05-19
    Publishing country Netherlands
    Document type Journal Article ; Research Support, N.I.H., Extramural
    ZDB-ID 60-7
    ISSN 1879-260X ; 1879-2596 ; 1872-8006 ; 1879-2642 ; 1879-2618 ; 1879-2650 ; 0006-3002 ; 0005-2728 ; 0005-2736 ; 0304-4165 ; 0167-4838 ; 1388-1981 ; 0167-4889 ; 0167-4781 ; 0304-419X ; 1570-9639 ; 0925-4439 ; 1874-9399
    ISSN (online) 1879-260X ; 1879-2596 ; 1872-8006 ; 1879-2642 ; 1879-2618 ; 1879-2650
    ISSN 0006-3002 ; 0005-2728 ; 0005-2736 ; 0304-4165 ; 0167-4838 ; 1388-1981 ; 0167-4889 ; 0167-4781 ; 0304-419X ; 1570-9639 ; 0925-4439 ; 1874-9399
    DOI 10.1016/j.bbadis.2023.166757
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Epigenetic Dysregulation and Its Correlation with the Steroidogenic Machinery Impacting Breast Pathogenesis: Data Mining and Molecular Insights into Therapeutics.

    Manna, Pulak R / Yang, Shengping / Reddy, P Hemachandra

    International journal of molecular sciences

    2023  Volume 24, Issue 22

    Abstract: Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast ... ...

    Abstract Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study, analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in comparison to their non-cancerous counterparts. Explicitly, genomic profiling of these epigenetic enzymes displayed increases in HDAC1, 2, 8, 10, 11, and Sirtuins (SIRTs) 6 and 7, and decreases in HDAC4-7, -9, and SIRT1-4 levels, respectively, in TCGA breast tumors. Kaplan-Meier plot analyses showed that these HDACs, with the exception of HDAC2 and SIRT2, were not correlated with the overall survival of BC patients. Additionally, disruption of the epigenetic signaling in TCGA BC subtypes, as assessed using both heatmaps and boxplots, was associated with the genomic expression of factors that are instrumental for cholesterol trafficking/utilization for accelerating estrogen/E2 levels, in which steroidogenic acute regulatory protein (STAR) mediates the rate-limiting step in steroid biosynthesis. TCGA breast samples showed diverse expression patterns of a variety of key steroidogenic markers and hormone receptors, including
    MeSH term(s) Humans ; Female ; Epigenomics ; Breast Neoplasms/pathology ; Estrogens/therapeutic use ; Data Mining ; Epigenesis, Genetic ; Gene Expression Regulation, Neoplastic
    Chemical Substances Estrogens
    Language English
    Publishing date 2023-11-18
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2019364-6
    ISSN 1422-0067 ; 1422-0067 ; 1661-6596
    ISSN (online) 1422-0067
    ISSN 1422-0067 ; 1661-6596
    DOI 10.3390/ijms242216488
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Cell-Free DNA As Peripheral Biomarker of Alzheimer's Disease.

    Khemka, Sachi / Sehar, Ujala / Manna, Pulak R / Kshirsagar, Sudhir / Reddy, P Hemachandra

    Aging and disease

    2024  

    Abstract: Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), ... ...

    Abstract Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), autosomal dominant, caused by mutations in presenilin-1, presenilin-2, and amyloid precursor protein genes and the other is a late-onset, prevalent and is evolved due to age-associated complex interactions between environmental and genetic factors, in addition to apolipoprotein E4 polymorphism. Cellular senescence, promoting the impairment of physical and mental functions is constituted to be the main cause of aging, the primary risk factor for AD, which results in progressive loss of cognitive function, memory, and visual-spatial skills for an individual to live or act independently. Despite significant progress in the understanding of the biology and pathophysiology of AD, we continue to lack definitive early detectable biomarkers and/or drug targets that can be used to delay the development of AD and ADRD in elderly populations. However, recent developments in the studies of DNA double-strand breaks result in the release of fragmented DNA into the bloodstream and contribute to higher levels of cell-free DNA (cf-DNA). This fragmented cf-DNA can be released into the bloodstream from various cell types, including normal cells and cells undergoing apoptosis or necrosis and elevated levels of cf-DNA in the blood have the potential to serve as blood blood-based biomarker for early detection of AD and ADRD. The overall goal of our study is to discuss the latest developments in circulating cell-free DNA into the blood in the progression of AD and ADRD. Our article summarized the status of research on double-strand breaks and circulating cell-free DNA in both healthy and disease states and how these recent developments can be used to develop early detectable biomarkers for AD and ADRD. Our article also discussed the impact of lifestyle and epigenetic factors that are involved in DNA double-strand breaks and circulating cell-free DNA in AD and ADRD.
    Language English
    Publishing date 2024-04-04
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2625789-0
    ISSN 2152-5250 ; 2152-5250
    ISSN (online) 2152-5250
    ISSN 2152-5250
    DOI 10.14336/AD.2024.0329
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  4. Article ; Online: Healthy Immunity on Preventive Medicine for Combating COVID-19.

    Manna, Pulak R / Gray, Zackery C / Reddy, P Hemachandra

    Nutrients

    2022  Volume 14, Issue 5

    Abstract: Immunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many ...

    Abstract Immunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many organs, cellular structures, and signaling molecules. A balanced diet, rich in vitamins, minerals, and antioxidants, is key to a strengthened immune system and, thus, crucial to proper functioning of various physiological activities. Conversely, deficiencies of these micronutrients, involving impaired immunity, are linked to numerous health complications, along with a host of pathologies. Coronavirus disease 2019 (COVID-19) is a dangerous infectious disease caused by a β-form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its genomic variants, which enter host cells upon binding to the angiotensin converting enzyme 2 receptors, and is associated with substantial morbidities and mortalities globally. Patients afflicted with COVID-19 display asymptomatic to severe symptoms, occurrences of which are multifactorial and include diverse immune responses, sex and gender differences, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, regardless of their states, are most vulnerable to severe COVID-19-associated infections and complications, with fatal outcomes. Advances in genomic and proteomic technologies help one understand molecular events, including host-pathogen interactions and pathogenesis of COVID-19 and, subsequently, have developed a variety of preventive measures urgently, ranging from mask wearing to vaccination to medication. Despite these approaches, no unique strategy is available today that can effectively prevent and/or treat this hostile disease. As a consequence, the maintenance of a boosted immune system could be considered a high priority of preventive medicine for combating COVID-19. Herein, we discuss the current level of understanding underlining the contribution of healthy immunity and its relevance to COVID-19 molecular pathogenesis, and potential therapeutic strategies, in the management of this devastating disease.
    MeSH term(s) Aged ; COVID-19 ; Female ; Genomics ; Host-Pathogen Interactions ; Humans ; Proteomics ; SARS-CoV-2
    Language English
    Publishing date 2022-02-27
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2518386-2
    ISSN 2072-6643 ; 2072-6643
    ISSN (online) 2072-6643
    ISSN 2072-6643
    DOI 10.3390/nu14051004
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article: Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein.

    Manna, Pulak R

    Data in brief

    2016  Volume 7, Page(s) 940–945

    Abstract: ... signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317 ...

    Abstract Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity.
    Language English
    Publishing date 2016-03-19
    Publishing country Netherlands
    Document type Journal Article
    ZDB-ID 2786545-9
    ISSN 2352-3409
    ISSN 2352-3409
    DOI 10.1016/j.dib.2016.03.055
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article: COVID-19 and its genomic variants: Molecular pathogenesis and therapeutic interventions.

    Manna, Pulak R / Gray, Zackery C / Sikdar, Malabika / Reddy, Hemachandra

    EXCLI journal

    2022  Volume 21, Page(s) 1196–1221

    Abstract: Coronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin ... ...

    Abstract Coronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin converting enzyme 2 receptors that are expressed in a variety of tissues, but predominantly in the lungs, heart, and blood vessels. Patients afflicted with COVID-19 may be asymptomatic or present with critical symptoms possibly due to diverse lifestyles, immune responses, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, with immunocompromised conditions, are most vulnerable to severe COVID-19 associated infections, complications, and mortalities. Notably, whereas immunomodulation, involving nutritional consumption, is essential to protecting an individual from COVID-19, immunosuppression is detrimental to a person with this aggressive disease. As such, immune health is inversely correlated to COVID-19 severity and resulting consequences. Advances in genomic and proteomic technologies have helped us to understand the molecular events underlying symptomatology, transmission and, pathogenesis of COVID-19 and its genomic variants. Accordingly, there has been development of a variety of therapeutic interventions, ranging from mask wearing to vaccination to medication. This review summarizes the current understanding of molecular pathogenesis of COVID-19, effects of comorbidities on COVID-19, and prospective therapeutic strategies for the prevention and treatment of this contagious disease.
    Language English
    Publishing date 2022-09-13
    Publishing country Germany
    Document type Journal Article ; Review
    ISSN 1611-2156
    ISSN 1611-2156
    DOI 10.17179/excli2022-5315
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article: Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein.

    Manna, Pulak R / Ahmed, Ahsen U / Molehin, Deborah / Narasimhan, Madhusudhanan / Pruitt, Kevin / Reddy, P Hemachandra

    Biomedicines

    2022  Volume 10, Issue 6

    Abstract: Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy ... ...

    Abstract Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the
    Language English
    Publishing date 2022-06-03
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2720867-9
    ISSN 2227-9059
    ISSN 2227-9059
    DOI 10.3390/biomedicines10061313
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  8. Article: Healthy Immunity on Preventive Medicine for Combating COVID-19

    Manna, Pulak R. / Gray, Zackery C. / Reddy, P. Hemachandra

    Nutrients. 2022 Feb. 27, v. 14, no. 5

    2022  

    Abstract: Immunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many ...

    Abstract Immunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many organs, cellular structures, and signaling molecules. A balanced diet, rich in vitamins, minerals, and antioxidants, is key to a strengthened immune system and, thus, crucial to proper functioning of various physiological activities. Conversely, deficiencies of these micronutrients, involving impaired immunity, are linked to numerous health complications, along with a host of pathologies. Coronavirus disease 2019 (COVID-19) is a dangerous infectious disease caused by a β-form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its genomic variants, which enter host cells upon binding to the angiotensin converting enzyme 2 receptors, and is associated with substantial morbidities and mortalities globally. Patients afflicted with COVID-19 display asymptomatic to severe symptoms, occurrences of which are multifactorial and include diverse immune responses, sex and gender differences, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, regardless of their states, are most vulnerable to severe COVID-19-associated infections and complications, with fatal outcomes. Advances in genomic and proteomic technologies help one understand molecular events, including host–pathogen interactions and pathogenesis of COVID-19 and, subsequently, have developed a variety of preventive measures urgently, ranging from mask wearing to vaccination to medication. Despite these approaches, no unique strategy is available today that can effectively prevent and/or treat this hostile disease. As a consequence, the maintenance of a boosted immune system could be considered a high priority of preventive medicine for combating COVID-19. Herein, we discuss the current level of understanding underlining the contribution of healthy immunity and its relevance to COVID-19 molecular pathogenesis, and potential therapeutic strategies, in the management of this devastating disease.
    Keywords COVID-19 infection ; Severe acute respiratory syndrome coronavirus 2 ; diet ; drug therapy ; genomics ; immune system ; immunomodulation ; medicine ; pathogenesis ; proteomics ; vaccination
    Language English
    Dates of publication 2022-0227
    Publishing place Multidisciplinary Digital Publishing Institute
    Document type Article
    ZDB-ID 2518386-2
    ISSN 2072-6643
    ISSN 2072-6643
    DOI 10.3390/nu14051004
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  9. Article ; Online: Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    Pulak R. Manna

    Data in Brief, Vol 7, Iss , Pp 940-

    2016  Volume 945

    Abstract: ... signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317 ...

    Abstract Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. Keywords: Macrophages, Retinoids, StAR, Cholesterol efflux, RAR, RXR, ABCA1
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Science (General) ; Q1-390
    Subject code 616
    Language English
    Publishing date 2016-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Regulation of retinoid mediated StAR transcription and steroidogenesis in hippocampal neuronal cells: Implications for StAR in protecting Alzheimer's disease.

    Manna, Pulak R / Reddy, Arubala P / Pradeepkiran, Jangampalli Adi / Kshirsagar, Sudhir / Reddy, P Hemachandra

    Biochimica et biophysica acta. Molecular basis of disease

    2022  Volume 1869, Issue 2, Page(s) 166596

    Abstract: Retinoids (vitamin A and its derivatives) play pivotal roles in diverse processes, ranging from homeostasis to neurodegeneration, which are also influenced by steroid hormones. The rate-limiting step in steroid biosynthesis is mediated by the ... ...

    Abstract Retinoids (vitamin A and its derivatives) play pivotal roles in diverse processes, ranging from homeostasis to neurodegeneration, which are also influenced by steroid hormones. The rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. In the present study, we demonstrate that retinoids enhanced StAR expression and pregnenolone biosynthesis, and these parameters were markedly augmented by activation of the PKA pathway in mouse hippocampal neuronal HT22 cells. Deletion and mutational analyses of the 5'-flanking regions of the StAR gene revealed the importance of a retinoic acid receptor (RAR)/retinoid X receptor (RXR)-liver X receptor (LXR) heterodimeric motif at -200/-185 bp region in retinoid responsiveness. The RAR/RXR-LXR sequence motif can bind RARα and RXRα, and retinoid regulated transcription of the StAR gene was found to be influenced by the LXR pathway, representing signaling cross-talk in hippocampal neurosteroid biosynthesis. Steroidogenesis decreases during senescence due to declines in the central nervous system and the endocrine system, and results in hormone deficiencies, inferring the need for hormonal balance for healthy aging. Loss of neuronal cells, involving accumulation of amyloid beta (Aβ) and/or phosphorylated Tau within the brain, is the pathological hallmark of Alzheimer's disease (AD). HT22 cells overexpressing either mutant APP (mAPP) or mutant Tau (mTau), conditions mimetic to AD, enhanced toxicities, and resulted in attenuation of both basal and retinoid-responsive StAR and pregnenolone levels. Co-expression of StAR with either mAPP or mTau diminished cytotoxicity, and concomitantly elevated neurosteroid biosynthesis, pointing to a protective role of StAR in AD. These findings provide insights into the molecular events by which retinoid signaling upregulates StAR and steroid levels in hippocampal neuronal cells, and StAR, by rescuing mAPP and/or mTau-induced toxicities, modulates neurosteroidogenesis and restores hormonal balance, which may have important implications in protecting AD and age-related complications and diseases.
    MeSH term(s) Animals ; Mice ; Alzheimer Disease/metabolism ; Amyloid beta-Peptides/metabolism ; Hippocampus/metabolism ; Liver X Receptors/metabolism ; Neurosteroids/metabolism ; Retinoid X Receptors/metabolism ; Retinoids/metabolism ; Phosphoproteins/genetics ; Transcription, Genetic
    Chemical Substances Amyloid beta-Peptides ; Liver X Receptors ; Neurosteroids ; Retinoid X Receptors ; Retinoids ; steroidogenic acute regulatory protein ; Phosphoproteins
    Language English
    Publishing date 2022-11-07
    Publishing country Netherlands
    Document type Journal Article ; Research Support, N.I.H., Extramural
    ZDB-ID 60-7
    ISSN 1879-260X ; 1879-2596 ; 1872-8006 ; 1879-2642 ; 1879-2618 ; 1879-2650 ; 0006-3002 ; 0005-2728 ; 0005-2736 ; 0304-4165 ; 0167-4838 ; 1388-1981 ; 0167-4889 ; 0167-4781 ; 0304-419X ; 1570-9639 ; 0925-4439 ; 1874-9399
    ISSN (online) 1879-260X ; 1879-2596 ; 1872-8006 ; 1879-2642 ; 1879-2618 ; 1879-2650
    ISSN 0006-3002 ; 0005-2728 ; 0005-2736 ; 0304-4165 ; 0167-4838 ; 1388-1981 ; 0167-4889 ; 0167-4781 ; 0304-419X ; 1570-9639 ; 0925-4439 ; 1874-9399
    DOI 10.1016/j.bbadis.2022.166596
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top