LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Robust performance comparison of PMSM for flight control applications in more electric aircraft.

    Djaloul Karboua / Toual Belgacem / Zeashan Hameed Khan / Cherif Kellal

    PLoS ONE, Vol 18, Iss 7, p e

    2023  Volume 0283541

    Abstract: This paper describes a robust performance comparison of flight control actuation controllers based on a permanent magnet synchronous motor (PMSM) in more electric aircraft (MEA). Recently, the PMSM has become a favorite for the flight control ... ...

    Abstract This paper describes a robust performance comparison of flight control actuation controllers based on a permanent magnet synchronous motor (PMSM) in more electric aircraft (MEA). Recently, the PMSM has become a favorite for the flight control applications of more electric aircraft (MEA) due to their improved efficiency, higher torque, less noise, and higher reliability as compared to their counterparts. Thus, advanced nonlinear control techniques offer even better performance for the control of PMSM as noticed in this research. In this paper, three nonlinear approaches i.e. Feedback Linearization Control (FBL) through the cancellation of the non-linearity of the system, the stabilization of the system via Backstepping Control (BSC) using the Lyapunov candidate function as well as the robust performance with chattering minimization by applying the continuous approximation based Sliding Mode Control (SMC) are compared with generalized Field-Oriented Controller (FOC). The comparison of FOC, FBL, BSC and SMC shows that the nonlinear controllers perform well under varying aerodynamic loads during flight. However, the performance of the sliding mode control is found superior as compared to the other three controllers in terms of better performance characteristics e.g. response time, steady-state error etc. as well as the control robustness in the presence of the uncertain parameters of the PMSM model and variable load torque acting as a disturbance. In essence, the peak of the tolerance band is less than 20% for all nonlinear and FOC controller, while it is less than 5% for SMC. Steady state error for the SMC is least (0.01%) as compared to other three controllers. Moreover, the SMC controller is able to withstand 50% parameter variation and loading torque of 10 N.m without significant changes in performance. Six simulation scenarios are used to analyze the performance and robustness which depict that the sliding mode controller performs well in terms of the desired performance for MEA application.
    Keywords Medicine ; R ; Science ; Q
    Subject code 629
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Robust performance comparison of PMSM for flight control applications in more electric aircraft.

    Karboua, Djaloul / Belgacem, Toual / Khan, Zeashan Hameed / Kellal, Cherif

    PloS one

    2023  Volume 18, Issue 7, Page(s) e0283541

    Abstract: This paper describes a robust performance comparison of flight control actuation controllers based on a permanent magnet synchronous motor (PMSM) in more electric aircraft (MEA). Recently, the PMSM has become a favorite for the flight control ... ...

    Abstract This paper describes a robust performance comparison of flight control actuation controllers based on a permanent magnet synchronous motor (PMSM) in more electric aircraft (MEA). Recently, the PMSM has become a favorite for the flight control applications of more electric aircraft (MEA) due to their improved efficiency, higher torque, less noise, and higher reliability as compared to their counterparts. Thus, advanced nonlinear control techniques offer even better performance for the control of PMSM as noticed in this research. In this paper, three nonlinear approaches i.e. Feedback Linearization Control (FBL) through the cancellation of the non-linearity of the system, the stabilization of the system via Backstepping Control (BSC) using the Lyapunov candidate function as well as the robust performance with chattering minimization by applying the continuous approximation based Sliding Mode Control (SMC) are compared with generalized Field-Oriented Controller (FOC). The comparison of FOC, FBL, BSC and SMC shows that the nonlinear controllers perform well under varying aerodynamic loads during flight. However, the performance of the sliding mode control is found superior as compared to the other three controllers in terms of better performance characteristics e.g. response time, steady-state error etc. as well as the control robustness in the presence of the uncertain parameters of the PMSM model and variable load torque acting as a disturbance. In essence, the peak of the tolerance band is less than 20% for all nonlinear and FOC controller, while it is less than 5% for SMC. Steady state error for the SMC is least (0.01%) as compared to other three controllers. Moreover, the SMC controller is able to withstand 50% parameter variation and loading torque of 10 N.m without significant changes in performance. Six simulation scenarios are used to analyze the performance and robustness which depict that the sliding mode controller performs well in terms of the desired performance for MEA application.
    MeSH term(s) Models, Theoretical ; Reproducibility of Results ; Computer Simulation ; Magnets ; Aircraft
    Language English
    Publishing date 2023-07-07
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2267670-3
    ISSN 1932-6203 ; 1932-6203
    ISSN (online) 1932-6203
    ISSN 1932-6203
    DOI 10.1371/journal.pone.0283541
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Robotics Utilization for Healthcare Digitization in Global COVID-19 Management

    Zeashan Hameed Khan / Afifa Siddique / Chang Won Lee

    International Journal of Environmental Research and Public Health, Vol 17, Iss 3819, p

    2020  Volume 3819

    Abstract: This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to ... ...

    Abstract This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to minimize person-to-person contact and to ensure cleaning, sterilization and support in hospitals and similar facilities such as quarantine. This will result in minimizing the life threat to medical staff and doctors taking an active role in the management of theCOVID-19 pandemic. The intention of the present research is to highlight the importance of medical robotics in general and then to connect its utilization with the perspective of COVID-19 management so that the hospital management can direct themselves to maximize the use of medical robots for various medical procedures. This is despite the popularity of telemedicine, which is also effective in similar situations. In essence, the recent achievement of the Korean and Chinese health sectors in obtaining active control of the COVID-19 pandemic was not possible without the use of state of the art medical technology.
    Keywords Medical Robots ; COVID-19 ; Healthcare digitization ; Coronavirus pandemic ; Medicine ; R
    Subject code 629
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Stress Monitoring Using Machine Learning, IoT and Wearable Sensors.

    Al-Atawi, Abdullah A / Alyahyan, Saleh / Alatawi, Mohammed Naif / Sadad, Tariq / Manzoor, Tareq / Farooq-I-Azam, Muhammad / Khan, Zeashan Hameed

    Sensors (Basel, Switzerland)

    2023  Volume 23, Issue 21

    Abstract: The Internet of Things (IoT) has emerged as a fundamental framework for interconnected device communication, representing a relatively new paradigm and the evolution of the Internet into its next phase. Its significance is pronounced in diverse fields, ... ...

    Abstract The Internet of Things (IoT) has emerged as a fundamental framework for interconnected device communication, representing a relatively new paradigm and the evolution of the Internet into its next phase. Its significance is pronounced in diverse fields, especially healthcare, where it finds applications in scenarios such as medical service tracking. By analyzing patterns in observed parameters, the anticipation of disease types becomes feasible. Stress monitoring with wearable sensors and the Internet of Things (IoT) is a potential application that can enhance wellness and preventative health management. Healthcare professionals have harnessed robust systems incorporating battery-based wearable technology and wireless communication channels to enable cost-effective healthcare monitoring for various medical conditions. Network-connected sensors, whether within living spaces or worn on the body, accumulate data crucial for evaluating patients' health. The integration of machine learning and cutting-edge technology has sparked research interest in addressing stress levels. Psychological stress significantly impacts a person's physiological parameters. Stress can have negative impacts over time, prompting sometimes costly therapies. Acute stress levels can even constitute a life-threatening risk, especially in people who have previously been diagnosed with borderline personality disorder or schizophrenia. To offer a proactive solution within the realm of smart healthcare, this article introduces a novel machine learning-based system termed "Stress-Track". The device is intended to track a person's stress levels by examining their body temperature, sweat, and motion rate during physical activity. The proposed model achieves an impressive accuracy rate of 99.5%, showcasing its potential impact on stress management and healthcare enhancement.
    MeSH term(s) Humans ; Internet of Things ; Wearable Electronic Devices ; Delivery of Health Care ; Machine Learning ; Motion
    Language English
    Publishing date 2023-10-31
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2052857-7
    ISSN 1424-8220 ; 1424-8220
    ISSN (online) 1424-8220
    ISSN 1424-8220
    DOI 10.3390/s23218875
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article ; Online: Robotics Utilization for Healthcare Digitization in Global COVID-19 Management.

    Khan, Zeashan Hameed / Siddique, Afifa / Lee, Chang Won

    International journal of environmental research and public health

    2020  Volume 17, Issue 11

    Abstract: This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to ... ...

    Abstract This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to minimize person-to-person contact and to ensure cleaning, sterilization and support in hospitals and similar facilities such as quarantine. This will result in minimizing the life threat to medical staff and doctors taking an active role in the management of theCOVID-19 pandemic. The intention of the present research is to highlight the importance of medical robotics in general and then to connect its utilization with the perspective of COVID-19 management so that the hospital management can direct themselves to maximize the use of medical robots for various medical procedures. This is despite the popularity of telemedicine, which is also effective in similar situations. In essence, the recent achievement of the Korean and Chinese health sectors in obtaining active control of the COVID-19 pandemic was not possible without the use of state of the art medical technology.
    MeSH term(s) Betacoronavirus ; COVID-19 ; Coronavirus Infections/epidemiology ; Delivery of Health Care/methods ; Hospital Administration ; Humans ; Infection Control/methods ; Pandemics ; Pneumonia, Viral/epidemiology ; Robotics/methods ; SARS-CoV-2 ; Telemedicine
    Keywords covid19
    Language English
    Publishing date 2020-05-28
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2175195-X
    ISSN 1660-4601 ; 1661-7827
    ISSN (online) 1660-4601
    ISSN 1661-7827
    DOI 10.3390/ijerph17113819
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  6. Article ; Online: Satellite Imagery-Based Cloud Classification Using Deep Learning

    Rukhsar Yousaf / Hafiz Zia Ur Rehman / Khurram Khan / Zeashan Hameed Khan / Adnan Fazil / Zahid Mahmood / Saeed Mian Qaisar / Abdul Jabbar Siddiqui

    Remote Sensing, Vol 15, Iss 23, p

    2023  Volume 5597

    Abstract: A significant amount of satellite imaging data is now easily available due to the continued development of remote sensing (RS) technology. Enabling the successful application of RS in real-world settings requires efficient and scalable solutions to ... ...

    Abstract A significant amount of satellite imaging data is now easily available due to the continued development of remote sensing (RS) technology. Enabling the successful application of RS in real-world settings requires efficient and scalable solutions to extend their use in multidisciplinary areas. The goal of quick analysis and precise classification in Remote Sensing Imaging (RSI) is often accomplished by utilizing approaches based on deep Convolution Neural Networks (CNNs). This research offers a unique snapshot-based residual network (SnapResNet) that consists of fully connected layers (FC-1024), batch normalization (BN), L2 regularization, dropout layers, dense layer, and data augmentation. Architectural changes overcome the inter-class similarity problem while data augmentation resolves the problem of imbalanced classes. Moreover, the snapshot ensemble technique is utilized to prevent over-fitting, thereby further improving the network’s performance. The proposed SnapResNet152 model employs the most challenging Large-Scale Cloud Images Dataset for Meteorology Research (LSCIDMR), having 10 classes with thousands of high-resolution images and classifying them into respective classes. The developed model outperforms the existing deep learning-based algorithms (e.g., AlexNet, VGG-19, ResNet101, and EfficientNet) and achieves an overall accuracy of 97.25%.
    Keywords deep learning ; SnapResNet model ; weather forecasting ; satellite image ; predictions ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article: Robotics Utilization for Healthcare Digitization in Global COVID-19 Management

    Khan, Zeashan Hameed / Siddique, Afifa / Lee, Chang Won

    Int. j. environ. res. public health (Online)

    Abstract: This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to ... ...

    Abstract This paper describes the evolving role of robotics in healthcare and allied areas with special concerns relating to the management and control of the spread of the novel coronavirus disease 2019 (COVID-19). The prime utilization of such robots is to minimize person-to-person contact and to ensure cleaning, sterilization and support in hospitals and similar facilities such as quarantine. This will result in minimizing the life threat to medical staff and doctors taking an active role in the management of theCOVID-19 pandemic. The intention of the present research is to highlight the importance of medical robotics in general and then to connect its utilization with the perspective of COVID-19 management so that the hospital management can direct themselves to maximize the use of medical robots for various medical procedures. This is despite the popularity of telemedicine, which is also effective in similar situations. In essence, the recent achievement of the Korean and Chinese health sectors in obtaining active control of the COVID-19 pandemic was not possible without the use of state of the art medical technology.
    Keywords covid19
    Publisher WHO
    Document type Article
    Note WHO #Covidence: #401231
    Database COVID19

    Kategorien

  8. Article: Towards realizing robotic potential in future intelligent food manufacturing systems

    Khan, Zeashan Hameed / Khalid, Azfar / Iqbal, Jamshed

    Innovative food science & emerging technologies. 2018 Aug., v. 48

    2018  

    Abstract: This paper provides a comprehensive review of the robotic potential that is foreseen by researchers in designing future food manufacturing plant. The present day food handling and packaging setup is limited in capacity and output due to manual processing. ...

    Abstract This paper provides a comprehensive review of the robotic potential that is foreseen by researchers in designing future food manufacturing plant. The present day food handling and packaging setup is limited in capacity and output due to manual processing. An optimized protocol to fetch various ingredients and shape them in a final product by passing through various stages in an automated processing plant while simultaneously ensuring high quality and hygienic environment is merely possible by using robotized processing. The review also highlights the possibilities and limitations of introducing these high technology robots in the food sector. A comparison of several robots from different classes is listed with major technical parameters. However, as predicted, a food cyber-physical production system (CPPS) visualizes a closed loop system for the desired output keeping in view various constraints and risks. Human machine interface (HMI) for these machines complies with the industrial safety standards to provide a fail safe production cycle. Various new horizons in research and development of food robots are also highlighted in the upcoming industrial paradigm.
    Keywords automation ; closed loop systems ; food handling ; food industry ; food processing plants ; ingredients ; packaging ; protocols ; research and development ; robots ; safety standards
    Language English
    Dates of publication 2018-08
    Size p. 11-24.
    Publishing place Elsevier Ltd
    Document type Article
    ZDB-ID 2025029-0
    ISSN 1466-8564
    ISSN 1466-8564
    DOI 10.1016/j.ifset.2018.05.011
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top