LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images.

Autee, Pratik / Bagwe, Sagar / Shah, Vimal / Srivastava, Kriti

Physical and engineering sciences in medicine

2020  Volume 43, Issue 4, Page(s) 1399–1414

Abstract: The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches have ... ...

Abstract The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches have suggested that visible irregularities found in the chest X-ray of Covid-19 positive patients are indicative of the presence of the disease. Hence, Deep Learning and Image Classification techniques can be employed to learn from these irregularities, and classify accordingly with high accuracy. This research presents an approach to create a classifier model named StackNet-DenVIS which is designed to act as a screening process before conducting the existing swab tests. Using a novel approach, which incorporates Transfer Learning and Stacked Generalization, the model aims to lower the False Negative rate of classification compensating for the 30% False Negative rate of the swab tests. A dataset gathered from multiple reliable sources consisting of 9953 Chest X-rays (868 Covid and 9085 Non-Covid) was used. Also, this research demonstrates handling data imbalance using various techniques involving Generative Adversarial Networks and sampling techniques. The accuracy, sensitivity, and specificity obtained on our proposed model were 95.07%, 99.40% and 94.61% respectively. To the best of our knowledge, the combination of accuracy and false negative rate obtained by this paper outperforms the current implementations. We must also highlight that our proposed architecture also considers other types of viral pneumonia. Given the unprecedented sensitivity of our model we are optimistic it contributes to a better Covid-19 detection.
MeSH term(s) Algorithms ; Artifacts ; COVID-19/diagnosis ; COVID-19/diagnostic imaging ; COVID-19/virology ; COVID-19 Testing ; Databases, Factual ; Humans ; Image Processing, Computer-Assisted ; Lung/diagnostic imaging ; Models, Theoretical ; Neural Networks, Computer ; ROC Curve ; SARS-CoV-2/physiology ; Time Factors ; X-Rays
Language English
Publishing date 2020-12-04
Publishing country Switzerland
Document type Journal Article
ISSN 2662-4737
ISSN (online) 2662-4737
DOI 10.1007/s13246-020-00952-6
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top