LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Selection of the Optimal L-asparaginase II Against Acute Lymphoblastic Leukemia: An In Silico Approach.

    Baral, Adesh / Gorkhali, Ritesh / Basnet, Amit / Koirala, Shubham / Bhattarai, Hitesh Kumar

    JMIRx med

    2021  Volume 2, Issue 3, Page(s) e29844

    Abstract: Background: L-asparaginase II (asnB), a periplasmic protein commercially extracted from E coli and Erwinia, is often used to treat acute lymphoblastic leukemia. L-asparaginase is an enzyme that converts L-asparagine to aspartic acid and ammonia. Cancer ... ...

    Abstract Background: L-asparaginase II (asnB), a periplasmic protein commercially extracted from E coli and Erwinia, is often used to treat acute lymphoblastic leukemia. L-asparaginase is an enzyme that converts L-asparagine to aspartic acid and ammonia. Cancer cells are dependent on asparagine from other sources for growth, and when these cells are deprived of asparagine by the action of the enzyme, the cancer cells selectively die.
    Objective: Questions remain as to whether asnB from E coli and Erwinia is the best asparaginase as they have many side effects. asnBs with the lowest Michaelis constant (Km; most potent) and lowest immunogenicity are considered the most optimal enzymes. In this paper, we have attempted the development of a method to screen for optimal enzymes that are better than commercially available enzymes.
    Methods: In this paper, the asnB sequence of E coli was used to search for homologous proteins in different bacterial and archaeal phyla, and a maximum likelihood phylogenetic tree was constructed. The sequences that are most distant from E coli and Erwinia were considered the best candidates in terms of immunogenicity and were chosen for further processing. The structures of these proteins were built by homology modeling, and asparagine was docked with these proteins to calculate the binding energy.
    Results: asnBs from Streptomyces griseus, Streptomyces venezuelae, and Streptomyces collinus were found to have the highest binding energy (-5.3 kcal/mol, -5.2 kcal/mol, and -5.3 kcal/mol, respectively; higher than the E coli and Erwinia asnBs) and were predicted to have the lowest Kms, as we found that there is an inverse relationship between binding energy and Km. Besides predicting the most optimal asparaginase, this technique can also be used to predict the most optimal enzymes where the substrate is known and the structure of one of the homologs is solved.
    Conclusions: We have devised an in silico method to predict the enzyme kinetics from a sequence of an enzyme along with being able to screen for optimal alternative asnBs against acute lymphoblastic leukemia.
    Language English
    Publishing date 2021-09-08
    Publishing country Canada
    Document type Journal Article
    ISSN 2563-6316
    ISSN (online) 2563-6316
    DOI 10.2196/29844
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins.

    Gorkhali, Ritesh / Koirala, Prashanna / Rijal, Sadikshya / Mainali, Ashmita / Baral, Adesh / Bhattarai, Hitesh Kumar

    Bioinformatics and biology insights

    2021  Volume 15, Page(s) 11779322211025876

    Abstract: SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is ... ...

    Abstract SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host's translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.
    Language English
    Publishing date 2021-06-22
    Publishing country United States
    Document type Journal Article ; Review
    ZDB-ID 2423808-9
    ISSN 1177-9322
    ISSN 1177-9322
    DOI 10.1177/11779322211025876
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins

    Ritesh Gorkhali / Prashanna Koirala / Sadikshya Rijal / Ashmita Mainali / Adesh Baral / Hitesh Kumar Bhattarai

    Bioinformatics and Biology Insights, Vol

    2021  Volume 15

    Abstract: SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is ... ...

    Abstract SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host’s translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been ...
    Keywords Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher SAGE Publishing
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top