LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.

    Palukuri, Meghana Venkata / Marcotte, Edward M

    PloS one

    2021  Volume 16, Issue 12, Page(s) e0262056

    Abstract: Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, ... ...

    Abstract Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, potential protein complexes can be identified computationally through the application of community detection methods, which flag groups of entities interacting with each other in certain patterns. Most community detection algorithms tend to be unsupervised and assume that communities are dense network subgraphs, which is not always true, as protein complexes can exhibit diverse network topologies. The few existing supervised machine learning methods are serial and can potentially be improved in terms of accuracy and scalability by using better-suited machine learning models and parallel algorithms. Here, we present Super.Complex, a distributed, supervised AutoML-based pipeline for overlapping community detection in weighted networks. We also propose three new evaluation measures for the outstanding issue of comparing sets of learned and known communities satisfactorily. Super.Complex learns a community fitness function from known communities using an AutoML method and applies this fitness function to detect new communities. A heuristic local search algorithm finds maximally scoring communities, and a parallel implementation can be run on a computer cluster for scaling to large networks. On a yeast protein-interaction network, Super.Complex outperforms 6 other supervised and 4 unsupervised methods. Application of Super.Complex to a human protein-interaction network with ~8k nodes and ~60k edges yields 1,028 protein complexes, with 234 complexes linked to SARS-CoV-2, the COVID-19 virus, with 111 uncharacterized proteins present in 103 learned complexes. Super.Complex is generalizable with the ability to improve results by incorporating domain-specific features. Learned community characteristics can also be transferred from existing applications to detect communities in a new application with no known communities. Code and interactive visualizations of learned human protein complexes are freely available at: https://sites.google.com/view/supercomplex/super-complex-v3-0.
    MeSH term(s) COVID-19/immunology ; Computational Biology/methods ; Humans ; Protein Binding ; Protein Interaction Mapping ; Protein Interaction Maps ; Proteins/immunology ; SARS-CoV-2/immunology ; Supervised Machine Learning ; Viral Proteins/immunology
    Chemical Substances Proteins ; Viral Proteins
    Language English
    Publishing date 2021-12-31
    Publishing country United States
    Document type Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ISSN 1932-6203
    ISSN (online) 1932-6203
    DOI 10.1371/journal.pone.0262056
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Super.Complex

    Meghana Venkata Palukuri / Edward M Marcotte

    PLoS ONE, Vol 16, Iss 12, p e

    A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.

    2021  Volume 0262056

    Abstract: Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, ... ...

    Abstract Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, potential protein complexes can be identified computationally through the application of community detection methods, which flag groups of entities interacting with each other in certain patterns. Most community detection algorithms tend to be unsupervised and assume that communities are dense network subgraphs, which is not always true, as protein complexes can exhibit diverse network topologies. The few existing supervised machine learning methods are serial and can potentially be improved in terms of accuracy and scalability by using better-suited machine learning models and parallel algorithms. Here, we present Super.Complex, a distributed, supervised AutoML-based pipeline for overlapping community detection in weighted networks. We also propose three new evaluation measures for the outstanding issue of comparing sets of learned and known communities satisfactorily. Super.Complex learns a community fitness function from known communities using an AutoML method and applies this fitness function to detect new communities. A heuristic local search algorithm finds maximally scoring communities, and a parallel implementation can be run on a computer cluster for scaling to large networks. On a yeast protein-interaction network, Super.Complex outperforms 6 other supervised and 4 unsupervised methods. Application of Super.Complex to a human protein-interaction network with ~8k nodes and ~60k edges yields 1,028 protein complexes, with 234 complexes linked to SARS-CoV-2, the COVID-19 virus, with 111 uncharacterized proteins present in 103 learned complexes. Super.Complex is generalizable with the ability to improve results by incorporating domain-specific features. Learned community characteristics can also be transferred from existing applications to detect communities in ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Super.Complex

    Meghana Venkata Palukuri / Edward M. Marcotte

    PLoS ONE, Vol 16, Iss

    A supervised machine learning pipeline for molecular complex detection in protein-interaction networks

    2021  Volume 12

    Abstract: Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, ... ...

    Abstract Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, potential protein complexes can be identified computationally through the application of community detection methods, which flag groups of entities interacting with each other in certain patterns. Most community detection algorithms tend to be unsupervised and assume that communities are dense network subgraphs, which is not always true, as protein complexes can exhibit diverse network topologies. The few existing supervised machine learning methods are serial and can potentially be improved in terms of accuracy and scalability by using better-suited machine learning models and parallel algorithms. Here, we present Super.Complex, a distributed, supervised AutoML-based pipeline for overlapping community detection in weighted networks. We also propose three new evaluation measures for the outstanding issue of comparing sets of learned and known communities satisfactorily. Super.Complex learns a community fitness function from known communities using an AutoML method and applies this fitness function to detect new communities. A heuristic local search algorithm finds maximally scoring communities, and a parallel implementation can be run on a computer cluster for scaling to large networks. On a yeast protein-interaction network, Super.Complex outperforms 6 other supervised and 4 unsupervised methods. Application of Super.Complex to a human protein-interaction network with ~8k nodes and ~60k edges yields 1,028 protein complexes, with 234 complexes linked to SARS-CoV-2, the COVID-19 virus, with 111 uncharacterized proteins present in 103 learned complexes. Super.Complex is generalizable with the ability to improve results by incorporating domain-specific features. Learned community characteristics can also be transferred from existing applications to detect communities in a new application with no known communities. Code and interactive visualizations of learned human protein complexes are freely available at: https://sites.google.com/view/supercomplex/super-complex-v3-0.
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article: A Computational Framework for Studying Gut-Brain Axis in Autism Spectrum Disorder.

    Mohammad, Faiz Khan / Palukuri, Meghana Venkata / Shivakumar, Shruti / Rengaswamy, Raghunathan / Sahoo, Swagatika

    Frontiers in physiology

    2022  Volume 13, Page(s) 760753

    Abstract: Introduction: The integrity of the intestinal epithelium is crucial for human health and is harmed in autism spectrum disorder (ASD). An aberrant gut microbial composition resulting in gut-derived metabolic toxins was found to damage the intestinal ... ...

    Abstract Introduction: The integrity of the intestinal epithelium is crucial for human health and is harmed in autism spectrum disorder (ASD). An aberrant gut microbial composition resulting in gut-derived metabolic toxins was found to damage the intestinal epithelium, jeopardizing tissue integrity. These toxins further reach the brain
    Methods: A representative gut model capturing host-bacteria and bacteria-bacteria interaction was developed using CBM techniques and patient data. Simultaneously, a PBPK model of toxin metabolism was assembled, incorporating multi-scale metabolic information. Furthermore, dynamic flux balance analysis was performed to integrate CBM and PBPK. The effectiveness of a probiotic and dietary intervention to improve autism symptoms was tested on the integrated model.
    Results: The model accurately highlighted critical metabolic pathways of the gut and brain that are associated with ASD. These include central carbon, nucleotide, and vitamin metabolism in the host gut, and mitochondrial energy and amino acid metabolisms in the brain. The proposed dietary intervention revealed that a high-fiber diet is more effective than a western diet in reducing toxins produced inside the gut. The addition of probiotic bacteria
    Conclusion: The proposed computational framework is novel in its applicability, as demonstrated by the determination of the whole-body distribution of ROS toxins and metabolic association in ASD. In addition, it emphasized the potential for developing novel therapeutic strategies to alleviate autism symptoms. Notably, the presented integrated model validates the importance of combining PBPK modeling with COBRA -specific tissue details for understanding disease pathogenesis.
    Language English
    Publishing date 2022-03-07
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2564217-0
    ISSN 1664-042X
    ISSN 1664-042X
    DOI 10.3389/fphys.2022.760753
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top