LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Targeted ASO-mediated Atp1a2 knockdown in astrocytes reduces SOD1 aggregation and accelerates disease onset in mutant SOD1 mice.

    Abhirami K Iyer / Kathleen M Schoch / Anthony Verbeck / Grant Galasso / Hao Chen / Sarah Smith / Anna Oldenborg / Timothy M Miller / Celeste M Karch / Azad Bonni

    PLoS ONE, Vol 18, Iss 11, p e

    2023  Volume 0294731

    Abstract: Astrocyte-specific ion pump α2-Na+/K+-ATPase plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Here, we test the effect of Atp1a2 mRNA-specific antisense oligonucleotides (ASOs) to induce α2-Na+/K+-ATPase knockdown in the ... ...

    Abstract Astrocyte-specific ion pump α2-Na+/K+-ATPase plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Here, we test the effect of Atp1a2 mRNA-specific antisense oligonucleotides (ASOs) to induce α2-Na+/K+-ATPase knockdown in the widely used ALS animal model, SOD1*G93A mice. Two ASOs led to efficient Atp1a2 knockdown and significantly reduced SOD1 aggregation in vivo. Although Atp1a2 ASO-treated mice displayed no off-target or systemic toxicity, the ASO-treated mice exhibited an accelerated disease onset and shorter lifespan than control mice. Transcriptomics studies reveal downregulation of genes involved in oxidative response, metabolic pathways, trans-synaptic signaling, and upregulation of genes involved in glutamate receptor signaling and complement activation, suggesting a potential role for these molecular pathways in de-coupling SOD1 aggregation from survival in Atp1a2 ASO-treated mice. Together, these results reveal a role for α2-Na+/K+-ATPase in SOD1 aggregation and highlight the critical effect of temporal modulation of genetically validated therapeutic targets in neurodegenerative diseases.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling

    Miguel A. Minaya / Sidhartha Mahali / Abhirami K. Iyer / Abdallah M. Eteleeb / Rita Martinez / Guangming Huang / John Budde / Sally Temple / Alissa L. Nana / William W. Seeley / Salvatore Spina / Lea T. Grinberg / Oscar Harari / Celeste M. Karch

    Frontiers in Molecular Biosciences, Vol

    2023  Volume 10

    Abstract: Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT ...

    Abstract Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau.Methods: We analyzed genes differentially expressed in induced pluripotent stem cell–derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
    Keywords IPSC-derived neurons ; frontotemporal dementia (FTD) ; MAPT mutations (tau) ; transcriptomics ; calcium signaling ; Biology (General) ; QH301-705.5
    Subject code 572 ; 571
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis

    Abhirami K. Iyer / Kathryn J. Jones / Virginia M. Sanders / Chandler L. Walker

    International Journal of Molecular Sciences, Vol 19, Iss 2, p

    2018  Volume 631

    Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it ... ...

    Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS.
    Keywords amyotrophic lateral sclerosis (ALS) ; immune response ; neuroimmunology ; motor neuron disease ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2018-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top