LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Airway administration of OM-85, a bacterial lysate, blocks experimental asthma by targeting dendritic cells and the epithelium/IL-33/ILC2 axis.

Pivniouk, Vadim / Gimenes-Junior, Joao A / Ezeh, Peace / Michael, Ashley / Pivniouk, Oksana / Hahn, Seongmin / VanLinden, Sydney R / Malone, Sean P / Abidov, Amir / Anderson, Dayna / Gozdz, Justyna / DeVries, Avery / Martinez, Fernando D / Pasquali, Christian / Vercelli, Donata

The Journal of allergy and clinical immunology

2021  Volume 149, Issue 3, Page(s) 943–956

Abstract: Background: Microbial interventions against allergic asthma have robust epidemiologic underpinnings and the potential to recalibrate disease-inducing immune responses. Oral administration of OM-85, a standardized lysate of human airways bacteria, is ... ...

Abstract Background: Microbial interventions against allergic asthma have robust epidemiologic underpinnings and the potential to recalibrate disease-inducing immune responses. Oral administration of OM-85, a standardized lysate of human airways bacteria, is widely used empirically to prevent respiratory infections and a clinical trial is testing its ability to prevent asthma in high-risk children. We previously showed that intranasal administration of microbial products from farm environments abrogates experimental allergic asthma.
Objectives: We sought to investigate whether direct administration of OM-85 to the airway compartment protects against experimental allergic asthma; and to identify protective cellular and molecular mechanisms activated through this natural route.
Methods: Different strains of mice sensitized and challenged with ovalbumin or Alternaria received OM-85 intranasally, and cardinal cellular and molecular asthma phenotypes were measured. Airway transfer experiments assessed whether OM-85-treated dendritic cells protect allergen-sensitized, OM-85-naive mice against asthma.
Results: Airway OM-85 administration suppressed allergic asthma in all models acting on multiple innate and adaptive immune targets: the airway epithelium/IL-33/ILC2 axis, lung allergen-induced type 2 responses, and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming was sufficient to transfer OM-85-induced asthma protection.
Conclusions: We provide the first demonstration that administering a standardized bacterial lysate to the airway compartment protects from experimental allergic asthma by engaging multiple immune pathways. Because protection required a cumulative dose 27- to 46-fold lower than the one reportedly active through the oral route, the efficacy of intranasal OM-85 administration may reflect its direct access to the airway mucosal networks controlling the initiation and development of allergic asthma.
MeSH term(s) Allergens ; Animals ; Asthma ; Cell Extracts ; Dendritic Cells ; Disease Models, Animal ; Epithelium ; Humans ; Immunity, Innate ; Interleukin-33 ; Lung ; Lymphocytes ; Mice ; Mice, Inbred BALB C ; Ovalbumin
Chemical Substances Allergens ; Broncho-Vaxom ; Cell Extracts ; Interleukin-33 ; Ovalbumin (9006-59-1)
Language English
Publishing date 2021-09-22
Publishing country United States
Document type Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
ZDB-ID 121011-7
ISSN 1097-6825 ; 1085-8725 ; 0091-6749
ISSN (online) 1097-6825 ; 1085-8725
ISSN 0091-6749
DOI 10.1016/j.jaci.2021.09.013
Shelf mark
Uh III Zs.92: Show issues Location:
Je nach Verfügbarkeit (siehe Angabe bei Bestand)
bis Jg. 2021: Bestellungen von Artikeln über das Online-Bestellformular
ab Jg. 2022: Lesesaal (EG)
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top