LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Unwavering Pathobiology of Volumetric Muscle Loss Injury

    Sarah M. Greising / Jessica C. Rivera / Stephen M. Goldman / Alain Watts / Carlos A. Aguilar / Benjamin T. Corona

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    2017  Volume 14

    Abstract: Abstract Volumetric muscle loss (VML) resulting from extremity trauma presents chronic and persistent functional deficits which ultimately manifest disability. Acellular biological scaffolds, or decellularized extracellular matrices (ECMs), embody an ... ...

    Abstract Abstract Volumetric muscle loss (VML) resulting from extremity trauma presents chronic and persistent functional deficits which ultimately manifest disability. Acellular biological scaffolds, or decellularized extracellular matrices (ECMs), embody an ideal treatment platform due to their current clinical use for soft tissue repair, off-the-shelf availability, and zero autogenous donor tissue burden. ECMs have been reported to promote functional skeletal muscle tissue remodeling in small and large animal models of VML injury, and this conclusion was reached in a recent clinical trial that enrolled 13 patients. However, numerous other pre-clinical reports have not observed ECM-mediated skeletal muscle regeneration. The current study was designed to reconcile these discrepancies. The capacity of ECMs to orchestrate functional muscle tissue remodeling was interrogated in a porcine VML injury model using unbiased assessments of muscle tissue regeneration and functional recovery. Here, we show that VML injury incites an overwhelming inflammatory and fibrotic response that leads to expansive fibrous tissue deposition and chronic functional deficits, which ECM repair does not augment.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2017-10-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma

    Carlos A. Aguilar / Ramona Pop / Anna Shcherbina / Alain Watts / Ronald W. Matheny Jr. / Davide Cacchiarelli / Woojin M. Han / Eunjung Shin / Shadi A. Nakhai / Young C. Jang / Christopher T. Carrigan / Casey A. Gifford / Melissa A. Kottke / Marcella Cesana / Jackson Lee / Maria L. Urso / Alexander Meissner

    Stem Cell Reports, Vol 7, Iss 5, Pp 983-

    2016  Volume 997

    Abstract: Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that ... ...

    Abstract Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that control these reparative events is lacking. To address this, we monitored the in vivo dynamics of three histone modifications and coding and noncoding RNA expression throughout the regenerative process in a mouse model of traumatic muscle injury. We first illustrate how both coding and noncoding RNAs in tissues and sorted satellite cells are modified and regulated during various stages after trauma. Next, we use chromatin immunoprecipitation followed by sequencing to evaluate the chromatin state of cis-regulatory elements (promoters and enhancers) and view how these elements evolve and influence various muscle repair and regeneration transcriptional programs. These results provide a comprehensive view of the central factors that regulate muscle regeneration and underscore the multiple levels through which both transcriptional and epigenetic patterns are regulated to enact appropriate repair and regeneration.
    Keywords Medicine (General) ; R5-920 ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2016-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top