LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article: A Miniaturized Device Coupled with Digital Image Correlation for Mechanical Testing.

    Cruz, Daniel J / Xavier, Jose / Amaral, Rui L / Santos, Abel D

    Micromachines

    2022  Volume 13, Issue 11

    Abstract: Miniaturized mechanical testing based on small sample testing technology is a powerful technique to characterize the mechanical properties of different materials, and it is being used in different application fields. However, the small size of the ... ...

    Abstract Miniaturized mechanical testing based on small sample testing technology is a powerful technique to characterize the mechanical properties of different materials, and it is being used in different application fields. However, the small size of the specimens poses several challenges because the results are highly sensitive to measurement accuracy and the corresponding mechanical properties can change substantially due to the so-called specimen size effect. In this work, a novel testing device based on miniaturized specimens is presented. The equipment is designed to test materials in tensile and compressive loadings, but it is also capable of performing reverse-loading tests. Buckling of the specimen is an inherent phenomenon in compression loadings, especially for thin materials. Therefore, specimen geometry is properly studied and optimized to mitigate this effect. To evaluate the deformation of the specimen, the digital image correlation (DIC) technique is used to capture the full-field strain in the central gauge section of the sample. A sensitivity analysis of the DIC setting parameters was performed for this application. To evaluate the performance of the developed system, experimental results of monotonic tests and tests with reverse loadings (tension-compression) are presented, considering two high-strength steels (DP500 and DP780).
    Language English
    Publishing date 2022-11-19
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2620864-7
    ISSN 2072-666X
    ISSN 2072-666X
    DOI 10.3390/mi13112027
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations.

    Habraken, Anne Marie / Aksen, Toros Arda / Alves, José L / Amaral, Rui L / Betaieb, Ehssen / Chandola, Nitin / Corallo, Luca / Cruz, Daniel J / Duchêne, Laurent / Engel, Bernd / Esener, Emre / Firat, Mehmet / Frohn-Sörensen, Peter / Galán-López, Jesús / Ghiabakloo, Hadi / Kestens, Leo A I / Lian, Junhe / Lingam, Rakesh / Liu, Wencheng /
    Ma, Jun / Menezes, Luís F / Nguyen-Minh, Tuan / Miranda, Sara S / Neto, Diogo M / Pereira, André F G / Prates, Pedro A / Reuter, Jonas / Revil-Baudard, Benoit / Rojas-Ulloa, Carlos / Sener, Bora / Shen, Fuhui / Van Bael, Albert / Verleysen, Patricia / Barlat, Frederic / Cazacu, Oana / Kuwabara, Toshihiko / Lopes, Augusto / Oliveira, Marta C / Santos, Abel D / Vincze, Gabriela

    International journal of material forming

    2022  Volume 15, Issue 5, Page(s) 61

    Abstract: This article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed ... ...

    Abstract This article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed Finite Element (FE) codes, with solid, continuum or classical shell elements and different contact models. The material characterization (tensile tests, biaxial tensile tests, monotonic and reverse shear tests, EBSD measurements) and the cup forming steps were performed with care (redundancy of measurements). The Benchmark organizers identified some constitutive laws but each team could perform its own identification. The methodology to reach material data is systematically described as well as the final data set. The ability of the constitutive law and of the FE model to predict Lankford and yield stress in different directions is verified. Then, the simulation results such as the earing (number and average height and amplitude), the punch force evolution and thickness in the cup wall are evaluated and analysed. The CPU time, the manpower for each step as well as the required tests versus the final prediction accuracy of more than 20 FE simulations are commented. The article aims to guide students and engineers in their choice of a constitutive law (yield locus, hardening law or plasticity approach) and data set used in the identification, without neglecting the other FE features, such as software, explicit or implicit strategy, element type and contact model.
    Language English
    Publishing date 2022-07-15
    Publishing country France
    Document type Journal Article
    ZDB-ID 2423930-6
    ISSN 1960-6214 ; 1960-6206
    ISSN (online) 1960-6214
    ISSN 1960-6206
    DOI 10.1007/s12289-022-01672-w
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top