LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Protective roles of peroxiporins AQP0 and AQP11 in human astrocyte and neuronal cell lines in response to oxidative and inflammatory stressors.

    Amro, Zein / Collins-Praino, Lyndsey E / Yool, Andrea J

    Bioscience reports

    2024  Volume 44, Issue 3

    Abstract: In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) ... ...

    Abstract In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.
    MeSH term(s) Humans ; Aquaporins/genetics ; Aquaporins/metabolism ; Astrocytes/metabolism ; Cell Line ; Hydrogen Peroxide/metabolism ; Hydrogen Peroxide/toxicity ; Lipopolysaccharides/pharmacology ; Neurons/metabolism ; Oxidative Stress ; Eye Proteins/genetics ; Eye Proteins/metabolism ; Neuroprotection
    Chemical Substances Aquaporins ; Hydrogen Peroxide (BBX060AN9V) ; Lipopolysaccharides ; aquaporin 0 ; Eye Proteins ; AQP11 protein, human
    Language English
    Publishing date 2024-03-06
    Publishing country England
    Document type Journal Article
    ZDB-ID 764946-0
    ISSN 1573-4935 ; 0144-8463
    ISSN (online) 1573-4935
    ISSN 0144-8463
    DOI 10.1042/BSR20231725
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Unexpected Classes of Aquaporin Channels Detected by Transcriptomic Analysis in Human Brain Are Associated with Both Patient Age and Alzheimer's Disease Status.

    Amro, Zein / Ryan, Matthew / Collins-Praino, Lyndsey E / Yool, Andrea J

    Biomedicines

    2023  Volume 11, Issue 3

    Abstract: The altered expression of known brain Aquaporin (AQP) channels 1, 4 and 9 has been correlated with neuropathological AD progression, but possible roles of other AQP classes in neurological disease remain understudied. The levels of transcripts of all ... ...

    Abstract The altered expression of known brain Aquaporin (AQP) channels 1, 4 and 9 has been correlated with neuropathological AD progression, but possible roles of other AQP classes in neurological disease remain understudied. The levels of transcripts of all thirteen human AQP subtypes were compared in healthy and Alzheimer's disease (AD) brains by statistical analyses of microarray RNAseq expression data from the Allen Brain Atlas database. Previously unreported, AQPs 0, 6 and 10, are present in human brains at the transcript level. Three AD-affected brain regions, hippocampus (HIP), parietal cortex (PCx) and temporal cortex (TCx), were assessed in three subgroups: young controls (
    Language English
    Publishing date 2023-03-03
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2720867-9
    ISSN 2227-9059
    ISSN 2227-9059
    DOI 10.3390/biomedicines11030770
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies.

    Amro, Zein / Yool, Andrea J / Collins-Praino, Lyndsey E

    Brain, behavior, & immunity - health

    2021  Volume 14, Page(s) 100242

    Abstract: Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and ... ...

    Abstract Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
    Language English
    Publishing date 2021-03-17
    Publishing country United States
    Document type Journal Article ; Review
    ISSN 2666-3546
    ISSN (online) 2666-3546
    DOI 10.1016/j.bbih.2021.100242
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top