LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Familial Parkinson’s Disease Patients Display α-Synuclein Pathology and Abnormal Mitochondrial Morphology

    Xiaojun Diao / Fei Wang / Andrea Becerra-Calixto / Claudio Soto / Abhisek Mukherjee

    Cells, Vol 10, Iss 2402, p

    2021  Volume 2402

    Abstract: Accumulation of α-synuclein (α-syn) into Lewy bodies (LBs) and mitochondrial abnormalities are the two cardinal pathobiological features of Parkinson’s disease (PD), which are associated with the loss of dopaminergic neurons. Although α-syn accumulates ... ...

    Abstract Accumulation of α-synuclein (α-syn) into Lewy bodies (LBs) and mitochondrial abnormalities are the two cardinal pathobiological features of Parkinson’s disease (PD), which are associated with the loss of dopaminergic neurons. Although α-syn accumulates in many different cellular and mouse models, these models generally lack LB features. Here, we generated midbrain dopaminergic (mDA) neuronal cultures from induced pluripotent stem cells (iPSCs) derived from familial PD (fPD) patients and healthy controls. We show that mDA neuronal cultures from fPD patients with A53T mutation and α-syn gene ( SNCA ) triplication display pathological α-syn deposits, which spatially and morphologically resemble LBs. Importantly, we did not find any apparent accumulation of pathological α-syn in mDA neuronal culture derived from a healthy donor. Furthermore, we show that there are morphological abnormalities in the mitochondrial network in mDA neuronal cultures from fPD patients. Consequently, these cells were more susceptible to mitochondrial damage compared with healthy donor-derived mDA neuronal cultures. Our results indicate that the iPSC-derived mDA neuronal culture platform can be used to investigate the spatiotemporal appearance of LBs, as well as their composition, architecture, and relationship with mitochondrial abnormalities.
    Keywords Parkinson’s disease ; iPSC ; dopaminergic neurons ; α-synuclein aggregates ; Lewy bodies ; mitochondria ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2021-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Modeling Traumatic Brain Injury in Human Cerebral Organoids

    Santiago Ramirez / Abhisek Mukherjee / Sofia Sepulveda / Andrea Becerra-Calixto / Nicolas Bravo-Vasquez / Camila Gherardelli / Melissa Chavez / Claudio Soto

    Cells, Vol 10, Iss 2683, p

    2021  Volume 2683

    Abstract: Traumatic brain injury (TBI) is a head injury that disrupts the normal brain structure and function. TBI has been extensively studied using various in vitro and in vivo models. Most of the studies have been done with rodent models, which may respond ... ...

    Abstract Traumatic brain injury (TBI) is a head injury that disrupts the normal brain structure and function. TBI has been extensively studied using various in vitro and in vivo models. Most of the studies have been done with rodent models, which may respond differently to TBI than human nerve cells. Taking advantage of the recent development of cerebral organoids (COs) derived from human induced pluripotent stem cells (iPSCs), which resemble the architecture of specific human brain regions, here, we adapted the controlled cortical impact (CCI) model to induce TBI in human COs as a novel in vitro platform. To adapt the CCI procedure into COs, we have developed a phantom brain matrix, matching the mechanical characteristics of the brain, altogether with an empty mouse skull as a platform to allow the use of the stereotactic CCI equipment on COs. After the CCI procedure, COs were histologically prepared to evaluate neurons and astrocyte populations using the microtubule-associated protein 2 (MAP2) and the glial fibrillary acidic protein (GFAP). Moreover, a marker of metabolic response, the neuron-specific enolase (NSE), and cellular death using cleaved caspase 3 were also analyzed. Our results show that human COs recapitulate the primary pathological changes of TBI, including metabolic alterations related to neuronal damage, neuronal loss, and astrogliosis. This novel approach using human COs to model TBI in vitro holds great potential and opens new alternatives for understanding brain abnormalities produced by TBI, and for the development and testing of new therapeutic approaches.
    Keywords cerebral organoids ; traumatic brain injury ; disease modeling ; Alzheimer’s disease ; amyloid plaques ; neurofibrillary tangles ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2021-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Protocol for controlled cortical impact in human cerebral organoids to model traumatic brain injury

    Santiago Ramirez / Abhisek Mukherjee / Sofia E. Sepulveda / Camila Gherardelli / Andrea Becerra-Calixto / Nicolas Bravo-Vasquez / Claudio Soto

    STAR Protocols, Vol 2, Iss 4, Pp 100987- (2021)

    2021  

    Abstract: Summary: Modeling traumatic brain injury (TBI) has been a challenge. Rodent and cellular models have provided relevant contributions despite their limitations. Here, we present a protocol for a TBI model based on the controlled cortical impact (CCI) ... ...

    Abstract Summary: Modeling traumatic brain injury (TBI) has been a challenge. Rodent and cellular models have provided relevant contributions despite their limitations. Here, we present a protocol for a TBI model based on the controlled cortical impact (CCI) performed on human cerebral organoids (COs), self-assembled 3D cultures that recapitulate features of the human brain. Here, we generate COs from iPSCs obtained from reprogrammed fibroblasts.For complete details on the use and execution of this protocol, please refer to Ramirez et al. (2021).
    Keywords Neuroscience ; Stem Cells ; Organoids ; Science (General) ; Q1-390
    Language English
    Publishing date 2021-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top