LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 18

Search options

  1. Article ; Online: Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis

    Katja Schlatterer / Christian Beck / Ulrich Schoppmeier / Andreas Peschel / Dorothee Kretschmer

    Communications Biology, Vol 4, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Katja Schlatterer et al. use mouse models to show that elevated serum acetate concentrations prime human neutrophils in a GPR43-dependent fashion, and rescue mice from severe sepsis. These results suggest microbiome-, diet-, or pathogen-derived short- ... ...

    Abstract Katja Schlatterer et al. use mouse models to show that elevated serum acetate concentrations prime human neutrophils in a GPR43-dependent fashion, and rescue mice from severe sepsis. These results suggest microbiome-, diet-, or pathogen-derived short-chain fatty acids govern the defense capacities of immune cells, potentially hinting at the therapeutic potential of GPR43 in treating sepsis.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article: Bacterial aminoacyl phospholipids – Biosynthesis and role in basic cellular processes and pathogenicity

    Slavetinsky, Christoph / Andreas Peschel / Sebastian Kuhn

    Biochimica et biophysica acta. 2017 Nov., v. 1862, no. 11

    2017  

    Abstract: The bacterial cell membrane accomplishes the controlled exchange of molecules with the extracellular space and mediates specific interactions with the environment. However, the cytoplasmic membrane also includes vulnerable targets for antimicrobial ... ...

    Abstract The bacterial cell membrane accomplishes the controlled exchange of molecules with the extracellular space and mediates specific interactions with the environment. However, the cytoplasmic membrane also includes vulnerable targets for antimicrobial agents. A common feature of cationic antimicrobial peptides (CAMPs) produced by other bacteria or by the host immune system is to utilize the negative charge of bacterial phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) for initial adherence and subsequent penetration into the membrane bilayer. To resist cationic antimicrobials many bacteria integrate positive charges into the membrane surface. This is accomplished by aminoacylation of negatively charged (PG) or (CL) with alanine, arginine, or lysine residues. The Multiple Peptide Resistance Factor (MprF) of Staphylococcus aureus is the prototype of a highly conserved protein family of aminoacyl phosphatidylglycerol synthases (aaPGSs) which modify PG or CL with amino acids. MprF is an oligomerizing membrane protein responsible for both, synthesis of lysyl phosphatidylglycerol (LysPG) in the inner leaflet of the cytoplasmic membrane and translocation of LysPG to the outer leaflet. This review focuses on occurrence, synthesis and function of bacterial aminoacyl phospholipids (aaPLs) and on the role of such lipids in basic cellular processes and pathogenicity. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
    Keywords alanine ; aminoacylation ; anti-infective agents ; antimicrobial cationic peptides ; arginine ; bacteria ; biosynthesis ; cardiolipins ; cell membranes ; extracellular space ; immune system ; lysine ; membrane proteins ; oligomerization ; pathogenicity ; Staphylococcus aureus
    Language English
    Dates of publication 2017-11
    Size p. 1310-1318.
    Publishing place Elsevier B.V.
    Document type Article
    ISSN 1388-1981
    DOI 10.1016/j.bbalip.2016.11.013
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  3. Article ; Online: Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF

    Christoph J Slavetinsky / Janna N Hauser / Cordula Gekeler / Jessica Slavetinsky / André Geyer / Alexandra Kraus / Doris Heilingbrunner / Samuel Wagner / Michael Tesar / Bernhard Krismer / Sebastian Kuhn / Christoph M Ernst / Andreas Peschel

    eLife, Vol

    2022  Volume 11

    Abstract: The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. Multiple peptide resistance factor (MprF) is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases ... ...

    Abstract The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. Multiple peptide resistance factor (MprF) is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases virulence and resistance of methicillin-resistant Staphylococcus aureus (MRSA) and other pathogens to cationic host defense peptides and antibiotics. With the aim to design MprF inhibitors that could sensitize MRSA to antimicrobial agents and support the clearance of staphylococcal infections with minimal selection pressure, we developed MprF-targeting monoclonal antibodies, which bound and blocked the MprF flippase subunit. Antibody M-C7.1 targeted a specific loop in the flippase domain that proved to be exposed at both sides of the bacterial membrane, thereby enhancing the mechanistic understanding of bacterial lipid translocation. M-C7.1 rendered MRSA susceptible to host antimicrobial peptides and antibiotics such as daptomycin, and it impaired MRSA survival in human phagocytes. Thus, MprF inhibitors are recommended for new antivirulence approaches against MRSA and other bacterial pathogens.
    Keywords Staphylococcus aureus ; MprF ; antivirulence drugs ; antimicrobial peptides ; MRSA ; bacterial lipids ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Subject code 572
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Inhibition of the ATP synthase sensitizes Staphylococcus aureus towards human antimicrobial peptides

    Liping Liu / Christian Beck / Katrine Nøhr-Meldgaard / Andreas Peschel / Dorothee Kretschmer / Hanne Ingmer / Martin Vestergaard

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 9

    Abstract: Abstract Antimicrobial peptides (AMPs) are an important part of the human innate immune system for protection against bacterial infections, however the AMPs display varying degrees of activity against Staphylococcus aureus. Previously, we showed that ... ...

    Abstract Abstract Antimicrobial peptides (AMPs) are an important part of the human innate immune system for protection against bacterial infections, however the AMPs display varying degrees of activity against Staphylococcus aureus. Previously, we showed that inactivation of the ATP synthase sensitizes S. aureus towards the AMP antibiotic class of polymyxins. Here we wondered if the ATP synthase similarly is needed for tolerance towards various human AMPs, including human β-defensins (hBD1-4), LL-37 and histatin 5. Importantly, we find that the ATP synthase mutant (atpA) is more susceptible to killing by hBD4, hBD2, LL-37 and histatin 5 than wild type cells, while no changes in susceptibility was detected for hBD3 and hBD1. Administration of the ATP synthase inhibitor, resveratrol, sensitizes S. aureus towards hBD4-mediated killing. Neutrophils rely on AMPs and reactive oxygen molecules to eliminate bacteria and the atpA mutant is more susceptible to killing by neutrophils than the WT, even when the oxidative burst is inhibited.These results show that the staphylococcal ATP synthase enhance tolerance of S. aureus towards some human AMPs and this indicates that inhibition of the ATP synthase may be explored as a new therapeutic strategy that sensitizes S. aureus to naturally occurring AMPs of the innate immune system.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    Daniela Janek / Alexander Zipperer / Andreas Kulik / Bernhard Krismer / Andreas Peschel

    PLoS Pathogens, Vol 12, Iss 8, p e

    2016  Volume 1005812

    Abstract: The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat ... ...

    Abstract The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2016-08-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Enterococcus faecium stimulates human neutrophils via the formyl-peptide receptor 2.

    Dominik Alexander Bloes / Michael Otto / Andreas Peschel / Dorothee Kretschmer

    PLoS ONE, Vol 7, Iss 6, p e

    2012  Volume 39910

    Abstract: The human formyl-peptide receptor 2 (FPR2/ALX) senses phenol-soluble modulin (PSM) peptide toxins produced by pathogenic staphylococcal species and plays a crucial role in directing neutrophil influx during staphylococcal infection. However, it has ... ...

    Abstract The human formyl-peptide receptor 2 (FPR2/ALX) senses phenol-soluble modulin (PSM) peptide toxins produced by pathogenic staphylococcal species and plays a crucial role in directing neutrophil influx during staphylococcal infection. However, it has remained unclear if FPR2 responds also to molecules from other bacterial pathogens. Here we analyzed a variety of gram-positive and gram-negative pathogens and found that apart from staphylococci only certain enterococcal strains have the capacity to stimulate FPR2/ALX. Most of the analyzed Enterococcus faecium but only sporadic Enterococcus faecalis strains released FPR2/ALX-stimulating molecules leading to neutrophil calcium ion fluxes, chemotaxis, and complement receptor upregulation. Among ten test strains vancomycin-resistant E. faecium had a significantly higher capacity to stimulate FPR2/ALX than vancomycin-susceptible strains, suggesting an association of strong FPR2/ALX activation with health-care associated strains. The enterococcal FPR2/ALX agonists were found to be peptides or proteins, which appear, however, to be unrelated to staphylococcal PSMs in sequence and physicochemical properties. Enterococci are among the most frequent invasive bacterial pathogens but the basis of enterococcal virulence and immune activation has remained incompletely understood. Our study indicates that previously unrecognized proteinaceous agonists contribute to Enterococcus-host interaction and underscores the importance of FPR2/ALX in host defense against major endogenous bacterial pathogens.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors

    Katharina Bitschar / Birgit Sauer / Jule Focken / Hanna Dehmer / Sonja Moos / Martin Konnerth / Nadine A. Schilling / Stephanie Grond / Hubert Kalbacher / Florian C. Kurschus / Friedrich Götz / Bernhard Krismer / Andreas Peschel / Birgit Schittek

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 14

    Abstract: Lugdunin is a peptide antibiotic produced by the skin commensal Staphylococcus lugdunensis. Here, the authors show that lugdunin reduces Staphylococcus aureus colonization in human keratinocytes and mouse skin by inducing the expression of human LL-37 ... ...

    Abstract Lugdunin is a peptide antibiotic produced by the skin commensal Staphylococcus lugdunensis. Here, the authors show that lugdunin reduces Staphylococcus aureus colonization in human keratinocytes and mouse skin by inducing the expression of human LL-37 and recruitment of monocytes and neutrophils.
    Keywords Science ; Q
    Language English
    Publishing date 2019-06-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors

    Katharina Bitschar / Birgit Sauer / Jule Focken / Hanna Dehmer / Sonja Moos / Martin Konnerth / Nadine A. Schilling / Stephanie Grond / Hubert Kalbacher / Florian C. Kurschus / Friedrich Götz / Bernhard Krismer / Andreas Peschel / Birgit Schittek

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 14

    Abstract: Lugdunin is a peptide antibiotic produced by the skin commensal Staphylococcus lugdunensis. Here, the authors show that lugdunin reduces Staphylococcus aureus colonization in human keratinocytes and mouse skin by inducing the expression of human LL-37 ... ...

    Abstract Lugdunin is a peptide antibiotic produced by the skin commensal Staphylococcus lugdunensis. Here, the authors show that lugdunin reduces Staphylococcus aureus colonization in human keratinocytes and mouse skin by inducing the expression of human LL-37 and recruitment of monocytes and neutrophils.
    Keywords Science ; Q
    Language English
    Publishing date 2019-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose.

    Bernhard Krismer / Manuel Liebeke / Daniela Janek / Mulugeta Nega / Maren Rautenberg / Gabriele Hornig / Clemens Unger / Christopher Weidenmaier / Michael Lalk / Andreas Peschel

    PLoS Pathogens, Vol 10, Iss 1, p e

    2014  Volume 1003862

    Abstract: Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to ... ...

    Abstract Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein.

    Isabelle Bleiziffer / Julian Eikmeier / Gottfried Pohlentz / Kathryn McAulay / Guoqing Xia / Muzaffar Hussain / Andreas Peschel / Simon Foster / Georg Peters / Christine Heilmann

    PLoS Pathogens, Vol 13, Iss 1, p e

    2017  Volume 1006110

    Abstract: Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To ... ...

    Abstract Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar ...
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 572
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top