LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Identification of cell type specific ACE2 modifiers by CRISPR screening.

    Emily J Sherman / Carmen Mirabelli / Vi T Tang / Taslima G Khan / Kyle Leix / Andrew A Kennedy / Sarah E Graham / Cristen J Willer / Andrew W Tai / Jonathan Z Sexton / Christiane E Wobus / Brian T Emmer

    PLoS Pathogens, Vol 18, Iss 3, p e

    2022  Volume 1010377

    Abstract: SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 ... ...

    Abstract SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: IgV somatic mutation of human anti–SARS-CoV-2 monoclonal antibodies governs neutralization and breadth of reactivity

    Mayara Garcia de Mattos Barbosa / Hui Liu / Daniel Huynh / Greg Shelley / Evan T. Keller / Brian T. Emmer / Emily Sherman / David Ginsburg / Andrew A. Kennedy / Andrew W. Tai / Christiane Wobus / Carmen Mirabeli / Thomas M. Lanigan / Milagros Samaniego / Wenzhao Meng / Aaron M. Rosenfeld / Eline T. Luning Prak / Jeffrey L. Platt / Marilia Cascalho

    JCI Insight, Vol 6, Iss

    2021  Volume 9

    Abstract: Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we ...

    Abstract Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti–SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein–specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10–12 M to 6.7 × 10–15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10–12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.
    Keywords COVID-19 ; Immunology ; Medicine ; R
    Subject code 572
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher American Society for Clinical investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top