LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article: Psychotropic drugs interaction with the lipid nanoparticle of COVID-19 mRNA therapeutics.

    Sfera, Adonis / Hazan, Sabine / Anton, Jonathan J / Sfera, Dan O / Andronescu, Christina V / Sasannia, Sarvin / Rahman, Leah / Kozlakidis, Zisis

    Frontiers in pharmacology

    2022  Volume 13, Page(s) 995481

    Abstract: The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people ... ...

    Abstract The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.
    Language English
    Publishing date 2022-09-09
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2587355-6
    ISSN 1663-9812
    ISSN 1663-9812
    DOI 10.3389/fphar.2022.995481
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration.

    Sfera, Adonis / Thomas, Karina G / Andronescu, Christina V / Jafri, Nyla / Sfera, Dan O / Sasannia, Sarvin / Zapata-Martín Del Campo, Carlos M / Maldonado, Jose C

    Frontiers in neuroscience

    2022  Volume 16, Page(s) 904816

    Abstract: Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral ...

    Abstract Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
    Language English
    Publishing date 2022-05-12
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2411902-7
    ISSN 1662-453X ; 1662-4548
    ISSN (online) 1662-453X
    ISSN 1662-4548
    DOI 10.3389/fnins.2022.904816
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Virus-Induced Membrane Fusion in Neurodegenerative Disorders.

    Osorio, Carolina / Sfera, Adonis / Anton, Jonathan J / Thomas, Karina G / Andronescu, Christina V / Li, Erica / Yahia, Rayan W / Avalos, Andrea García / Kozlakidis, Zisis

    Frontiers in cellular and infection microbiology

    2022  Volume 12, Page(s) 845580

    Abstract: A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable ... ...

    Abstract A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
    MeSH term(s) COVID-19 ; Cellular Senescence/physiology ; Humans ; Membrane Fusion ; Neurodegenerative Diseases ; SARS-CoV-2 ; Viruses
    Language English
    Publishing date 2022-03-24
    Publishing country Switzerland
    Document type Journal Article ; Review
    ZDB-ID 2619676-1
    ISSN 2235-2988 ; 2235-2988
    ISSN (online) 2235-2988
    ISSN 2235-2988
    DOI 10.3389/fcimb.2022.845580
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top