LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Asenjo, Ana B"
  2. AU="Satoh, Ryosuke"
  3. AU="Geeviman, Khamushavalli"
  4. AU="Cuenca-Estrella, Manuel"
  5. AU="Liljeström, Simon"
  6. AU="de Beltrán, Paula"
  7. AU="Bhatti, Asim"
  8. AU="Giménez Pardo, Consuelo"
  9. AU=Pollock Jennifer S AU=Pollock Jennifer S
  10. AU=Yakar Halil Ibrahim
  11. AU="O'Hara, Montana"
  12. AU="Connor, Jean A"
  13. AU="Wozniak, Kinga A"
  14. AU="Manjila, Sunil"
  15. AU="Gaviria-Cantin, Tania"
  16. AU="Pickett, Brett E"
  17. AU="Lee, Seung Yeol"
  18. AU="Waters, Aubri M"
  19. AU="Tremblay, Cyntia"
  20. AU="Sharafeldin, Tamer A"
  21. AU="Alladio, Francesca"
  22. AU="Cheng, Zhiluo"
  23. AU="Silva, Dândara Santos"
  24. AU="Timmann, Dagmar"
  25. AU="Jingping, Lin"
  26. AU="Yoon, Sangwook"
  27. AU="Sedor, John R."
  28. AU="Legrand, Julien"
  29. AU="Mintz, Kevin Todd"
  30. AU="Kösters, Markus"
  31. AU="Castano-Duque, Lina"
  32. AU="Lowry, Gregory V"
  33. AU="Gao, Xiaojuan"
  34. AU="Daniłowicz-Szymanowicz, Ludmiła"
  35. AU="Weber, Jesse N"
  36. AU="Fages-Masmiquel, Ester"
  37. AU="Macias Gil, Raul"
  38. AU="Planchat, Arnaud"
  39. AU="McElrath, Erin E"
  40. AU="Koji Ueda"
  41. AU="Pillas, Diana J"
  42. AU="Thomson, Jason J"
  43. AU="Mitra, Kalyan"
  44. AU="Sanjay Desai"
  45. AU=Cox David J AU=Cox David J
  46. AU="Grebenok, Robert J."
  47. AU="Blackburne, Brittney"
  48. AU="Bortoleti, Bruna Taciane da Silva"
  49. AU="Ehrbar, Martin"
  50. AU="Lepre, Davide"
  51. AU="Olszewska, Zuzanna"
  52. AU="Vojta, Leslie"
  53. AU=Wickstrom Eric AU=Wickstrom Eric
  54. AU="Gangavarapu, Sridevi"
  55. AU="Hussein, Hazem Abdelwaheb"
  56. AU=Cai Yixin AU=Cai Yixin
  57. AU="Hüls, Anke"
  58. AU="Poondru, Srinivasu"
  59. AU="Coca, Daniel"
  60. AU="Lebeau, Paul"
  61. AU="Dehghani, Sedigheh"
  62. AU="Ishibashi, Kenji"
  63. AU="Xu, Yanhua"
  64. AU="Matera, Katarzyna"
  65. AU="Ait-Ouarab, Slimane"
  66. AU="Nicola, Coppede"
  67. AU="Dewitt, John M"
  68. AU="Sorin M. Dudea"
  69. AU="Tanusha D. Ramdin"
  70. AU="Hao, Zehui"
  71. AU="Chauhan, Aman"

Suchergebnis

Treffer 1 - 10 von insgesamt 22

Suchoptionen

  1. Artikel: Cryo-EM Unveils the Processivity Mechanism of Kinesin KIF1A and the Impact of its Pathogenic Variant P305L.

    Benoit, Matthieu P M H / Rao, Lu / Asenjo, Ana B / Gennerich, Arne / Sosa, Hernando J

    bioRxiv : the preprint server for biology

    2023  

    Abstract: Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule ... ...

    Abstract Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.4 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
    Sprache Englisch
    Erscheinungsdatum 2023-12-15
    Erscheinungsland United States
    Dokumenttyp Preprint
    DOI 10.1101/2023.02.02.526913
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Author Correction: Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s.

    Benoit, Matthieu P M H / Asenjo, Ana B / Sosa, Hernando

    Nature communications

    2018  Band 9, Heft 1, Seite(n) 2748

    Abstract: The previously published version of this Article contained an error in Fig. 5. In panels f and g, the α and β symbols were swapped. The error has been corrected in both the PDF and HTML versions of the Article. ...

    Abstract The previously published version of this Article contained an error in Fig. 5. In panels f and g, the α and β symbols were swapped. The error has been corrected in both the PDF and HTML versions of the Article.
    Sprache Englisch
    Erscheinungsdatum 2018-07-11
    Erscheinungsland England
    Dokumenttyp Journal Article ; Published Erratum
    ISSN 2041-1723
    ISSN (online) 2041-1723
    DOI 10.1038/s41467-018-04858-6
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  3. Artikel ; Online: Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s.

    Benoit, Matthieu P M H / Asenjo, Ana B / Sosa, Hernando

    Nature communications

    2018  Band 9, Heft 1, Seite(n) 1662

    Abstract: Kinesin-13s constitute a distinct group within the kinesin superfamily of motor proteins that promote microtubule depolymerization and lack motile activity. The molecular mechanism by which kinesin-13s depolymerize microtubules and are adapted to perform ...

    Abstract Kinesin-13s constitute a distinct group within the kinesin superfamily of motor proteins that promote microtubule depolymerization and lack motile activity. The molecular mechanism by which kinesin-13s depolymerize microtubules and are adapted to perform a seemingly very different activity from other kinesins is still unclear. To address this issue, here we report the near atomic resolution cryo-electron microscopy (cryo-EM) structures of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to curved or straight tubulin in different nucleotide states. These structures show how nucleotide induced conformational changes near the catalytic site are coupled with movement of the kinesin-13-specific loop-2 to induce tubulin curvature leading to microtubule depolymerization. The data highlight a modular structure that allows similar kinesin core motor-domains to be used for different functions, such as motility or microtubule depolymerization.
    Mesh-Begriff(e) Adenosine Triphosphate/metabolism ; Cell Movement ; Cryoelectron Microscopy ; Drosophila Proteins/chemistry ; Drosophila Proteins/isolation & purification ; Drosophila Proteins/ultrastructure ; Kinesin/chemistry ; Kinesin/isolation & purification ; Kinesin/ultrastructure ; Microtubules/metabolism ; Microtubules/ultrastructure ; Molecular Docking Simulation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; Recombinant Proteins/isolation & purification ; Recombinant Proteins/ultrastructure ; Tubulin/chemistry ; Tubulin/ultrastructure
    Chemische Substanzen Drosophila Proteins ; Recombinant Proteins ; Tubulin ; Adenosine Triphosphate (8L70Q75FXE) ; KLP10A protein, Drosophila (EC 3.6.1.-) ; Kinesin (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2018-04-25
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ISSN 2041-1723
    ISSN (online) 2041-1723
    DOI 10.1038/s41467-018-04044-8
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  4. Artikel ; Online: Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14.

    Benoit, Matthieu P M H / Asenjo, Ana B / Paydar, Mohammadjavad / Dhakal, Sabin / Kwok, Benjamin H / Sosa, Hernando

    Nature communications

    2021  Band 12, Heft 1, Seite(n) 3637

    Abstract: KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling ...

    Abstract KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
    Mesh-Begriff(e) Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cryoelectron Microscopy ; Kinesins/chemistry ; Kinesins/genetics ; Kinesins/metabolism ; Ligands ; Mice ; Microtubules/chemistry ; Microtubules/genetics ; Microtubules/metabolism ; Molecular Docking Simulation ; Oncogene Proteins/chemistry ; Oncogene Proteins/genetics ; Oncogene Proteins/metabolism ; Protein Binding ; Protein Conformation ; Protein Domains
    Chemische Substanzen Ligands ; Oncogene Proteins ; Adenosine Diphosphate (61D2G4IYVH) ; Adenosine Triphosphate (8L70Q75FXE) ; Kif14 protein, mouse (EC 3.6.1.-) ; Kinesins (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2021-06-15
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 2553671-0
    ISSN 2041-1723 ; 2041-1723
    ISSN (online) 2041-1723
    ISSN 2041-1723
    DOI 10.1038/s41467-021-23581-3
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  5. Artikel ; Online: Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6.

    Ranaivoson, Fanomezana Moutse / Crozet, Vincent / Benoit, Matthieu P M H / Abdalla Mohammed Khalid, Amna / Kikuti, Carlos / Sirkia, Helena / El Marjou, Ahmed / Miserey-Lenkei, Stéphanie / Asenjo, Ana B / Sosa, Hernando / Schmidt, Christoph F / Rosenfeld, Steven S / Houdusse, Anne

    Open biology

    2023  Band 13, Heft 9, Seite(n) 230122

    Abstract: KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 ... ...

    Abstract KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
    Mesh-Begriff(e) Cryoelectron Microscopy ; Kinesins/genetics ; Binding Sites ; Cell Division ; Microtubules
    Chemische Substanzen Kinesins (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2023-09-20
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 2630944-0
    ISSN 2046-2441 ; 2046-2441
    ISSN (online) 2046-2441
    ISSN 2046-2441
    DOI 10.1098/rsob.230122
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  6. Artikel ; Online: Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape.

    Hunter, Byron / Benoit, Matthieu P M H / Asenjo, Ana B / Doubleday, Caitlin / Trofimova, Daria / Frazer, Corey / Shoukat, Irsa / Sosa, Hernando / Allingham, John S

    Nature communications

    2022  Band 13, Heft 1, Seite(n) 4198

    Abstract: Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures ( ... ...

    Abstract Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
    Mesh-Begriff(e) Adenosine Diphosphate/metabolism ; Kinesins ; Microtubules/metabolism ; Tubulin/metabolism
    Chemische Substanzen Tubulin ; Adenosine Diphosphate (61D2G4IYVH) ; Kinesins (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2022-07-20
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 2553671-0
    ISSN 2041-1723 ; 2041-1723
    ISSN (online) 2041-1723
    ISSN 2041-1723
    DOI 10.1038/s41467-022-31794-3
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  7. Artikel ; Online: A mobile kinesin-head intermediate during the ATP-waiting state.

    Asenjo, Ana B / Sosa, Hernando

    Proceedings of the National Academy of Sciences of the United States of America

    2009  Band 106, Heft 14, Seite(n) 5657–5662

    Abstract: Kinesin1 is a motor protein that uses the energy from ATP hydrolysis to move intracellular cargoes along microtubules. It contains 2 identical motor domains, or heads, that coordinate their mechano-chemical cycles to move processively along microtubules. ...

    Abstract Kinesin1 is a motor protein that uses the energy from ATP hydrolysis to move intracellular cargoes along microtubules. It contains 2 identical motor domains, or heads, that coordinate their mechano-chemical cycles to move processively along microtubules. The molecular mechanism of coordination between head domains remains unclear, partly because of the lack of structural information on critical intermediates of the kinesin1 mechano-chemical cycle. A point of controversy has been whether before ATP binding, in the so called ATP-waiting state, 1 or 2 motor domains are bound to the microtubule. To address this issue, here we use ensemble and single molecule fluorescence polarization microscopy (FPM) to determine the mobility and orientation of the kinesin1 heads at different ATP concentrations and in heterodimeric constructs with microtubule binding impaired in 1 head. We found evidence for a mobile head during the ATP-waiting state. We incorporate our results into a model for kinesin translocation that accounts well for many reported experimental results.
    Mesh-Begriff(e) Adenosine Triphosphate/metabolism ; Fluorescence Polarization ; Humans ; Kinesins/metabolism ; Kinetics ; Microscopy, Fluorescence ; Microtubules/metabolism ; Molecular Motor Proteins/metabolism ; Motion ; Protein Binding ; Protein Transport
    Chemische Substanzen Molecular Motor Proteins ; Adenosine Triphosphate (8L70Q75FXE) ; Kinesins (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2009-03-25
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural
    ZDB-ID 209104-5
    ISSN 1091-6490 ; 0027-8424
    ISSN (online) 1091-6490
    ISSN 0027-8424
    DOI 10.1073/pnas.0808355106
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  8. Artikel ; Online: Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin.

    Chen, Geng-Yuan / Cleary, Joseph M / Asenjo, Ana B / Chen, Yalei / Mascaro, Jacob A / Arginteanu, David F J / Sosa, Hernando / Hancock, William O

    Current biology : CB

    2019  Band 29, Heft 14, Seite(n) 2259–2269.e4

    Abstract: Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase ...

    Abstract Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase mechanism by assessing motor-induced changes in the longitudinal and lateral tubulin-tubulin bonds that form the microtubule lattice. Isolated Eg5 motor domains promote microtubule nucleation, growth, and stability; thus, crosslinking tubulin by pairs of motor heads is not necessary for polymerase activity. Eg5 binds preferentially to microtubules over free tubulin, which contrasts with microtubule-depolymerizing kinesins that preferentially bind free tubulin over microtubules. Colchicine-like inhibitors that stabilize the bent conformation of tubulin allosterically inhibit Eg5 binding, consistent with a model in which Eg5 induces a curved-to-straight transition in tubulin. Domain swap experiments establish that the family-specific loop11-helix 4 junction, which resides near the nucleotide-sensing switch-II domain, is necessary and sufficient for the polymerase activity of Eg5. Thus, we propose a microtubule polymerase mechanism in which Eg5 at the plus-end promotes a curved-to-straight transition in tubulin that enhances lateral bond formation and thereby promotes microtubule growth and stability. One implication is that regulation of Eg5 motile properties by regulatory proteins or small molecule inhibitors could also have effects on intracellular microtubule dynamics.
    Mesh-Begriff(e) Animals ; DNA-Directed DNA Polymerase/metabolism ; Kinesin/metabolism ; Microtubules/metabolism ; Xenopus Proteins/metabolism ; Xenopus laevis/physiology
    Chemische Substanzen KIF11 protein, Xenopus ; Xenopus Proteins ; DNA-Directed DNA Polymerase (EC 2.7.7.7) ; Kinesin (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2019-07-04
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 1071731-6
    ISSN 1879-0445 ; 0960-9822
    ISSN (online) 1879-0445
    ISSN 0960-9822
    DOI 10.1016/j.cub.2019.05.075
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  9. Artikel: A mobile kinesin-head intermediate during the ATP-waiting state

    Asenjo, Ana B / Sosa, Hernando

    Proceedings of the National Academy of Sciences of the United States of America. 2009 Apr. 7, v. 106, no. 14

    2009  

    Abstract: Kinesin1 is a motor protein that uses the energy from ATP hydrolysis to move intracellular cargoes along microtubules. It contains 2 identical motor domains, or heads, that coordinate their mechano-chemical cycles to move processively along microtubules. ...

    Abstract Kinesin1 is a motor protein that uses the energy from ATP hydrolysis to move intracellular cargoes along microtubules. It contains 2 identical motor domains, or heads, that coordinate their mechano-chemical cycles to move processively along microtubules. The molecular mechanism of coordination between head domains remains unclear, partly because of the lack of structural information on critical intermediates of the kinesin1 mechano-chemical cycle. A point of controversy has been whether before ATP binding, in the so called ATP-waiting state, 1 or 2 motor domains are bound to the microtubule. To address this issue, here we use ensemble and single molecule fluorescence polarization microscopy (FPM) to determine the mobility and orientation of the kinesin1 heads at different ATP concentrations and in heterodimeric constructs with microtubule binding impaired in 1 head. We found evidence for a mobile head during the ATP-waiting state. We incorporate our results into a model for kinesin translocation that accounts well for many reported experimental results.
    Schlagwörter adenosine triphosphate ; energy ; fluorescence ; hydrolysis ; kinesin ; microscopy ; microtubules ; models ; molecular motor proteins
    Sprache Englisch
    Erscheinungsverlauf 2009-0407
    Umfang p. 5657-5662.
    Erscheinungsort National Academy of Sciences
    Dokumenttyp Artikel
    ZDB-ID 209104-5
    ISSN 1091-6490 ; 0027-8424
    ISSN (online) 1091-6490
    ISSN 0027-8424
    DOI 10.1073/pnas.0808355106
    Datenquelle NAL Katalog (AGRICOLA)

    Zusatzmaterialien

    Kategorien

  10. Artikel: Structure and dynamics of the kinesin-microtubule interaction revealed by fluorescence polarization microscopy.

    Sosa, Hernando / Asenjo, Ana B / Peterman, Erwin J G

    Methods in cell biology

    2010  Band 95, Seite(n) 505–519

    Abstract: Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other ... ...

    Abstract Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other structural analysis techniques, are that it allows the detection of conformational changes of fluorescently labeled macromolecules in real time in physiological conditions and at the single-molecule level. In this chapter we describe in detail the FPM experimental set-up and analysis methods we have used to investigate structural intermediates of the motor protein kinesin-1 associated with its walking mechanism along microtubules. We also briefly describe additional FPM methods that have been used to investigate other macromolecular complexes.
    Mesh-Begriff(e) Animals ; Fluorescence Polarization/instrumentation ; Fluorescence Polarization/methods ; Humans ; Kinesin/chemistry ; Kinesin/metabolism ; Microscopy, Fluorescence/instrumentation ; Microscopy, Fluorescence/methods ; Microtubules/chemistry ; Microtubules/metabolism ; Models, Biological ; Protein Binding ; Protein Conformation ; Protein Multimerization
    Chemische Substanzen Kinesin (EC 3.6.4.4)
    Sprache Englisch
    Erscheinungsdatum 2010-05-11
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Review
    ISSN 0091-679X
    ISSN 0091-679X
    DOI 10.1016/S0091-679X(10)95025-5
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang