LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Bauer-Rowe, Khristian E"
  2. AU="Tanner, Martin E"
  3. AU="Creech, Gardner S"
  4. AU="José P. Oliveira-Filho"
  5. AU="Munt, Jennifer E"
  6. AU="Whiley, Phillip J"
  7. AU="V.Sudhir, "
  8. AU="Chatow, Lior"
  9. AU=Xue Zhe
  10. AU="Peter D. Yurchenco"
  11. AU="Várbíró, Gábor"
  12. AU="Sheleg, Dmitriy"
  13. AU="Panzirer, David"

Suchergebnis

Treffer 1 - 9 von insgesamt 9

Suchoptionen

  1. Artikel: Piezo inhibition prevents

    Griffin, Michelle F / Talbott, Heather E / Guardino, Nicholas J / Guo, Jason L / Spielman, Amanda F / Chen, Kellen / Parker, Jennifer B L / Mascharak, Shamik / Henn, Dominic / Liang, Norah / King, Megan / Cotterell, Asha C / Bauer-Rowe, Khristian E / Abbas, Darren B / Diaz Deleon, Nestor M / Sivaraj, Dharshan / Fahy, Evan J / Downer, Mauricio / Akras, Deena /
    Berry, Charlotte / Cook, Jessica / Quarto, Natalina / Klein, Ophir D / Lorenz, H Peter / Gurtner, Geoffrey C / Januszyk, Michael / Wan, Derrick C / Longaker, Michael T

    bioRxiv : the preprint server for biology

    2023  

    Abstract: While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response ... ...

    Abstract While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to
    Sprache Englisch
    Erscheinungsdatum 2023-04-04
    Erscheinungsland United States
    Dokumenttyp Preprint
    DOI 10.1101/2023.04.03.535302
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis.

    Beyaz, Semir / Chung, Charlie / Mou, Haiwei / Bauer-Rowe, Khristian E / Xifaras, Michael E / Ergin, Ilgin / Dohnalova, Lenka / Biton, Moshe / Shekhar, Karthik / Eskiocak, Onur / Papciak, Katherine / Ozler, Kadir / Almeqdadi, Mohammad / Yueh, Brian / Fein, Miriam / Annamalai, Damodaran / Valle-Encinas, Eider / Erdemir, Aysegul / Dogum, Karoline /
    Shah, Vyom / Alici-Garipcan, Aybuke / Meyer, Hannah V / Özata, Deniz M / Elinav, Eran / Kucukural, Alper / Kumar, Pawan / McAleer, Jeremy P / Fox, James G / Thaiss, Christoph A / Regev, Aviv / Roper, Jatin / Orkin, Stuart H / Yilmaz, Ömer H

    Cell stem cell

    2021  Band 28, Heft 11, Seite(n) 1922–1935.e5

    Abstract: Little is known about how interactions of diet, intestinal stem cells (ISCs), and immune cells affect early-stage intestinal tumorigenesis. We show that a high-fat diet (HFD) reduces the expression of the major histocompatibility complex class II (MHC ... ...

    Abstract Little is known about how interactions of diet, intestinal stem cells (ISCs), and immune cells affect early-stage intestinal tumorigenesis. We show that a high-fat diet (HFD) reduces the expression of the major histocompatibility complex class II (MHC class II) genes in intestinal epithelial cells, including ISCs. This decline in epithelial MHC class II expression in a HFD correlates with reduced intestinal microbiome diversity. Microbial community transfer experiments suggest that epithelial MHC class II expression is regulated by intestinal flora. Mechanistically, pattern recognition receptor (PRR) and interferon-gamma (IFNγ) signaling regulates epithelial MHC class II expression. MHC class II-negative (MHC-II-) ISCs exhibit greater tumor-initiating capacity than their MHC class II-positive (MHC-II+) counterparts upon loss of the tumor suppressor Apc coupled with a HFD, suggesting a role for epithelial MHC class II-mediated immune surveillance in suppressing tumorigenesis. ISC-specific genetic ablation of MHC class II increases tumor burden cell autonomously. Thus, HFD perturbs a microbiome-stem cell-immune cell interaction that contributes to tumor initiation in the intestine.
    Mesh-Begriff(e) Carcinogenesis ; Diet, High-Fat ; Epithelial Cells ; Histocompatibility Antigens Class II ; Humans ; Intestines
    Chemische Substanzen Histocompatibility Antigens Class II
    Sprache Englisch
    Erscheinungsdatum 2021-09-15
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 2375354-7
    ISSN 1875-9777 ; 1934-5909
    ISSN (online) 1875-9777
    ISSN 1934-5909
    DOI 10.1016/j.stem.2021.08.007
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  3. Artikel: Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet

    Cheng, Chia-Wei / Biton, Moshe / Haber, Adam L / Gunduz, Nuray / Eng, George / Gaynor, Liam T / Tripathi, Surya / Calibasi-Kocal, Gizem / Rickelt, Steffen / Butty, Vincent L / Moreno-Serrano, Marta / Iqbal, Ameena M / Bauer-Rowe, Khristian E / Imada, Shinya / Ulutas, Mehmet Sefa / Mylonas, Constantine / Whary, Mark T / Levine, Stuart S / Basbinar, Yasemin /
    Hynes, Richard O / Mino-Kenudson, Mari / Deshpande, Vikram / Boyer, Laurie A / Fox, James G / Terranova, Christopher / Rai, Kunal / Piwnica-Worms, Helen / Mihaylova, Maria M / Regev, Aviv / Yilmaz, Ömer H

    Cell. 2019 Aug. 22, v. 178, no. 5

    2019  

    Abstract: Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate- ... ...

    Abstract Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes βOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous βOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, βOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through βOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of βOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
    Schlagwörter 3-hydroxybutyric acid ; genes ; histone deacetylase ; homeostasis ; hydroxymethylglutaryl-CoA synthase ; ketogenic diet ; ketone bodies ; mammals ; small intestine ; stem cells
    Sprache Englisch
    Erscheinungsverlauf 2019-0822
    Umfang p. 1115-1131.e15.
    Erscheinungsort Elsevier Inc.
    Dokumenttyp Artikel
    ZDB-ID 187009-9
    ISSN 1097-4172 ; 0092-8674
    ISSN (online) 1097-4172
    ISSN 0092-8674
    DOI 10.1016/j.cell.2019.07.048
    Datenquelle NAL Katalog (AGRICOLA)

    Zusatzmaterialien

    Kategorien

  4. Artikel ; Online: Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin.

    Foster, Deshka S / Januszyk, Michael / Delitto, Daniel / Yost, Kathryn E / Griffin, Michelle / Guo, Jason / Guardino, Nicholas / Delitto, Andrea E / Chinta, Malini / Burcham, Austin R / Nguyen, Alan T / Bauer-Rowe, Khristian E / Titan, Ashley L / Salhotra, Ankit / Jones, R Ellen / da Silva, Oscar / Lindsay, Hunter G / Berry, Charlotte E / Chen, Kellen /
    Henn, Dominic / Mascharak, Shamik / Talbott, Heather E / Kim, Alexia / Nosrati, Fatemeh / Sivaraj, Dharshan / Ransom, R Chase / Matthews, Michael / Khan, Anum / Wagh, Dhananjay / Coller, John / Gurtner, Geoffrey C / Wan, Derrick C / Wapnir, Irene L / Chang, Howard Y / Norton, Jeffrey A / Longaker, Michael T

    Cancer cell

    2022  Band 40, Heft 11, Seite(n) 1392–1406.e7

    Abstract: Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we ... ...

    Abstract Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.
    Mesh-Begriff(e) Humans ; Cancer-Associated Fibroblasts/pathology ; Proteomics ; Tumor Microenvironment/genetics ; Phenotype ; Neoplasms/genetics ; Neoplasms/pathology
    Sprache Englisch
    Erscheinungsdatum 2022-10-20
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, N.I.H., Extramural
    ZDB-ID 2078448-X
    ISSN 1878-3686 ; 1535-6108
    ISSN (online) 1878-3686
    ISSN 1535-6108
    DOI 10.1016/j.ccell.2022.09.015
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  5. Artikel ; Online: Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging.

    Mihaylova, Maria M / Cheng, Chia-Wei / Cao, Amanda Q / Tripathi, Surya / Mana, Miyeko D / Bauer-Rowe, Khristian E / Abu-Remaileh, Monther / Clavain, Laura / Erdemir, Aysegul / Lewis, Caroline A / Freinkman, Elizaveta / Dickey, Audrey S / La Spada, Albert R / Huang, Yanmei / Bell, George W / Deshpande, Vikram / Carmeliet, Peter / Katajisto, Pekka / Sabatini, David M /
    Yilmaz, Ömer H

    Cell stem cell

    2018  Band 22, Heft 5, Seite(n) 769–778.e4

    Abstract: Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor ... ...

    Abstract Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
    Mesh-Begriff(e) Aging ; Animals ; Cells, Cultured ; Fasting/metabolism ; Fatty Acids/metabolism ; Homeostasis ; Intestines/cytology ; Mice ; Mice, Inbred Strains ; Oxidation-Reduction ; Stem Cells/cytology ; Stem Cells/metabolism
    Chemische Substanzen Fatty Acids
    Sprache Englisch
    Erscheinungsdatum 2018-05-04
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 2375354-7
    ISSN 1875-9777 ; 1934-5909
    ISSN (online) 1875-9777
    ISSN 1934-5909
    DOI 10.1016/j.stem.2018.04.001
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  6. Artikel ; Online: Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet.

    Cheng, Chia-Wei / Biton, Moshe / Haber, Adam L / Gunduz, Nuray / Eng, George / Gaynor, Liam T / Tripathi, Surya / Calibasi-Kocal, Gizem / Rickelt, Steffen / Butty, Vincent L / Moreno-Serrano, Marta / Iqbal, Ameena M / Bauer-Rowe, Khristian E / Imada, Shinya / Ulutas, Mehmet Sefa / Mylonas, Constantine / Whary, Mark T / Levine, Stuart S / Basbinar, Yasemin /
    Hynes, Richard O / Mino-Kenudson, Mari / Deshpande, Vikram / Boyer, Laurie A / Fox, James G / Terranova, Christopher / Rai, Kunal / Piwnica-Worms, Helen / Mihaylova, Maria M / Regev, Aviv / Yilmaz, Ömer H

    Cell

    2019  Band 178, Heft 5, Seite(n) 1115–1131.e15

    Abstract: Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate- ... ...

    Abstract Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5
    Mesh-Begriff(e) 3-Hydroxybutyric Acid/blood ; 3-Hydroxybutyric Acid/pharmacology ; Aged, 80 and over ; Animals ; Cell Differentiation/drug effects ; Cell Self Renewal ; Diet, High-Fat ; Female ; Histone Deacetylase Inhibitors/pharmacology ; Humans ; Hydroxymethylglutaryl-CoA Synthase/deficiency ; Hydroxymethylglutaryl-CoA Synthase/genetics ; Hydroxymethylglutaryl-CoA Synthase/metabolism ; Intestines/cytology ; Intestines/pathology ; Ketone Bodies/metabolism ; Male ; Mice ; Mice, Knockout ; Receptors, G-Protein-Coupled/metabolism ; Receptors, Notch/metabolism ; Signal Transduction/drug effects ; Stem Cells/cytology ; Stem Cells/metabolism ; Young Adult
    Chemische Substanzen Histone Deacetylase Inhibitors ; Ketone Bodies ; Lgr5 protein, mouse ; Receptors, G-Protein-Coupled ; Receptors, Notch ; HMGCS2 protein, mouse (EC 2.3.3.10) ; Hydroxymethylglutaryl-CoA Synthase (EC 2.3.3.10) ; 3-Hydroxybutyric Acid (TZP1275679)
    Sprache Englisch
    Erscheinungsdatum 2019-09-03
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 187009-9
    ISSN 1097-4172 ; 0092-8674
    ISSN (online) 1097-4172
    ISSN 0092-8674
    DOI 10.1016/j.cell.2019.07.048
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  7. Artikel ; Online: Author Correction: High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.

    Beyaz, Semir / Mana, Miyeko D / Roper, Jatin / Kedrin, Dmitriy / Saadatpour, Assieh / Hong, Sue-Jean / Bauer-Rowe, Khristian E / Xifaras, Michael E / Akkad, Adam / Arias, Erika / Pinello, Luca / Katz, Yarden / Shinagare, Shweta / Abu-Remaileh, Monther / Mihaylova, Maria M / Lamming, Dudley W / Dogum, Rizkullah / Guo, Guoji / Bell, George W /
    Selig, Martin / Nielsen, G Petur / Gupta, Nitin / Ferrone, Cristina R / Deshpande, Vikram / Yuan, Guo-Cheng / Orkin, Stuart H / Sabatini, David M / Yilmaz, Ömer H

    Nature

    2018  Band 560, Heft 7717, Seite(n) E26

    Abstract: In Fig. 4e of this Article, the labels for 'Control' and 'HFD' were reversed ('Control' should have been labelled blue rather than purple, and 'HFD' should have been labelled purple rather than blue). Similarly, in Fig. 4f of this Article, the labels for ...

    Abstract In Fig. 4e of this Article, the labels for 'Control' and 'HFD' were reversed ('Control' should have been labelled blue rather than purple, and 'HFD' should have been labelled purple rather than blue). Similarly, in Fig. 4f of this Article, the labels for 'V' and 'GW' were reversed ('V' should have been labelled blue rather than purple, and 'GW' should have been labelled purple instead of blue). The original figure has been corrected online.
    Sprache Englisch
    Erscheinungsdatum 2018-05-17
    Erscheinungsland England
    Dokumenttyp Journal Article ; Published Erratum
    ZDB-ID 120714-3
    ISSN 1476-4687 ; 0028-0836
    ISSN (online) 1476-4687
    ISSN 0028-0836
    DOI 10.1038/s41586-018-0187-y
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  8. Artikel ; Online: mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.

    Yilmaz, Ömer H / Katajisto, Pekka / Lamming, Dudley W / Gültekin, Yetis / Bauer-Rowe, Khristian E / Sengupta, Shomit / Birsoy, Kivanc / Dursun, Abdulmetin / Yilmaz, V Onur / Selig, Martin / Nielsen, G Petur / Mino-Kenudson, Mari / Zukerberg, Lawrence R / Bhan, Atul K / Deshpande, Vikram / Sabatini, David M

    Nature

    2012  Band 486, Heft 7404, Seite(n) 490–495

    Abstract: How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to ... ...

    Abstract How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.
    Mesh-Begriff(e) ADP-ribosyl Cyclase/metabolism ; Animals ; Antigens, CD/metabolism ; Caloric Restriction ; Cell Count ; Cell Division/drug effects ; Cyclic ADP-Ribose/metabolism ; Energy Intake/physiology ; Female ; GPI-Linked Proteins/agonists ; GPI-Linked Proteins/metabolism ; Intestines/cytology ; Longevity/physiology ; Male ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Multiprotein Complexes ; Paneth Cells/cytology ; Paneth Cells/drug effects ; Paneth Cells/metabolism ; Paracrine Communication ; Proteins/antagonists & inhibitors ; Proteins/metabolism ; Regeneration/drug effects ; Signal Transduction ; Sirolimus/pharmacology ; Stem Cell Niche/drug effects ; Stem Cell Niche/physiology ; Stem Cells/cytology ; Stem Cells/drug effects ; Stem Cells/metabolism ; TOR Serine-Threonine Kinases
    Chemische Substanzen Antigens, CD ; GPI-Linked Proteins ; Multiprotein Complexes ; Proteins ; Cyclic ADP-Ribose (119340-53-3) ; TOR Serine-Threonine Kinases (EC 2.7.1.1) ; Mechanistic Target of Rapamycin Complex 1 (EC 2.7.11.1) ; ADP-ribosyl Cyclase (EC 3.2.2.5) ; ADP-ribosyl cyclase 2 (EC 3.2.2.5) ; Sirolimus (W36ZG6FT64)
    Sprache Englisch
    Erscheinungsdatum 2012-06-22
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 120714-3
    ISSN 1476-4687 ; 0028-0836
    ISSN (online) 1476-4687
    ISSN 0028-0836
    DOI 10.1038/nature11163
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  9. Artikel ; Online: High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.

    Beyaz, Semir / Mana, Miyeko D / Roper, Jatin / Kedrin, Dmitriy / Saadatpour, Assieh / Hong, Sue-Jean / Bauer-Rowe, Khristian E / Xifaras, Michael E / Akkad, Adam / Arias, Erika / Pinello, Luca / Katz, Yarden / Shinagare, Shweta / Abu-Remaileh, Monther / Mihaylova, Maria M / Lamming, Dudley W / Dogum, Rizkullah / Guo, Guoji / Bell, George W /
    Selig, Martin / Nielsen, G Petur / Gupta, Nitin / Ferrone, Cristina R / Deshpande, Vikram / Yuan, Guo-Cheng / Orkin, Stuart H / Sabatini, David M / Yilmaz, Ömer H

    Nature

    2016  Band 531, Heft 7592, Seite(n) 53–58

    Abstract: Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. ... ...

    Abstract Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-δ) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-δ recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-δ-dependent manner. Notably, HFD- and agonist-activated PPAR-δ signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-δ signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-δ activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.
    Mesh-Begriff(e) Animals ; Cell Count ; Cell Self Renewal/drug effects ; Cell Transformation, Neoplastic/drug effects ; Colonic Neoplasms/pathology ; Diet, High-Fat/adverse effects ; Female ; Genes, APC ; Humans ; Intestines/pathology ; Male ; Mice ; Obesity/chemically induced ; Obesity/pathology ; Organoids/drug effects ; Organoids/metabolism ; Organoids/pathology ; PPAR delta/metabolism ; Signal Transduction/drug effects ; Stem Cell Niche/drug effects ; Stem Cells/drug effects ; Stem Cells/metabolism ; Stem Cells/pathology ; beta Catenin/metabolism
    Chemische Substanzen PPAR delta ; beta Catenin
    Sprache Englisch
    Erscheinungsdatum 2016-03-03
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S. ; Comment
    ZDB-ID 120714-3
    ISSN 1476-4687 ; 0028-0836
    ISSN (online) 1476-4687
    ISSN 0028-0836
    DOI 10.1038/nature17173
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang