LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment.

    Balderas, Enrique / Eberhardt, David R / Lee, Sandra / Pleinis, John M / Sommakia, Salah / Balynas, Anthony M / Yin, Xue / Parker, Mitchell C / Maguire, Colin T / Cho, Scott / Szulik, Marta W / Bakhtina, Anna / Bia, Ryan D / Friederich, Marisa W / Locke, Timothy M / Van Hove, Johan L K / Drakos, Stavros G / Sancak, Yasemin / Tristani-Firouzi, Martin /
    Franklin, Sarah / Rodan, Aylin R / Chaudhuri, Dipayan

    Nature communications

    2022  Volume 13, Issue 1, Page(s) 2769

    Abstract: Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. ... ...

    Abstract Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.
    MeSH term(s) Animals ; Calcium/metabolism ; Calcium Channels/metabolism ; Homeostasis ; Mitochondria/metabolism
    Chemical Substances Calcium Channels ; mitochondrial calcium uniporter ; Calcium (SY7Q814VUP)
    Language English
    Publishing date 2022-05-19
    Publishing country England
    Document type Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, N.I.H., Extramural
    ZDB-ID 2553671-0
    ISSN 2041-1723 ; 2041-1723
    ISSN (online) 2041-1723
    ISSN 2041-1723
    DOI 10.1038/s41467-022-30236-4
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Author Correction: Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment.

    Balderas, Enrique / Eberhardt, David R / Lee, Sandra / Pleinis, John M / Sommakia, Salah / Balynas, Anthony M / Yin, Xue / Parker, Mitchell C / Maguire, Colin T / Cho, Scott / Szulik, Marta W / Bakhtina, Anna / Bia, Ryan D / Friederich, Marisa W / Locke, Timothy M / Van Hove, Johan L K / Drakos, Stavros G / Sancak, Yasemin / Tristani-Firouzi, Martin /
    Franklin, Sarah / Rodan, Aylin R / Chaudhuri, Dipayan

    Nature communications

    2022  Volume 13, Issue 1, Page(s) 3532

    Language English
    Publishing date 2022-06-20
    Publishing country England
    Document type Published Erratum
    ZDB-ID 2553671-0
    ISSN 2041-1723 ; 2041-1723
    ISSN (online) 2041-1723
    ISSN 2041-1723
    DOI 10.1038/s41467-022-31304-5
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top