LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: A Study on the Preparation of Microbial and Nonstarch Polysaccharide Enzyme Synergistic Fermented Maize Cob Feed and Its Feeding Efficiency in Finishing Pigs

    Biaosheng Lin / Jianbin Yan / Zhilong Zhong / Xintian Zheng

    BioMed Research International, Vol

    2020  Volume 2020

    Abstract: 1000 g maize cob mixed material was synergistically fermented by adding 2.5% composite probiotics and 0.06-0.08% NSP (nonstarch polysaccharide) enzyme to prepare fermented feed, and its effectiveness as feed for fattening pigs was investigated. The ... ...

    Abstract 1000 g maize cob mixed material was synergistically fermented by adding 2.5% composite probiotics and 0.06-0.08% NSP (nonstarch polysaccharide) enzyme to prepare fermented feed, and its effectiveness as feed for fattening pigs was investigated. The results showed that the appearance, texture, and nutrient quality of maize cobs significantly improved after fermentation, the total number of bacteria was 4.5×1010 CFU/g, and the protein content was 7.1%. Compared to the control group, the pigs in the 6% fermented maize cob feed experimental group showed significantly increased daily feed intake, daily weight gain, and nutrient digestion rate (p<0.05) and reduced feed conversion ratio (p<0.05). Most indicators including slaughter performance and meat quality significantly improved. In addition, beneficial bacteria including Lactobacillus in the intestines of the finishing pigs significantly increased, and pathogenic bacteria including Escherichia coli in the intestines and feces were found to be significantly reduced (p<0.05). The intestinal crypt depth, VH/CD ratio, and ileal mucosal immunity of the finishing pigs also significantly improved (p<0.05). The cytokine content and gene expression of sIgA, IL-8, and TNF-α were found to be significantly increased (p<0.05). It could be concluded that the addition of 6% fermented maize cob feed to the diets of finishing pigs could promote their growth, improve their production performance and slaughter performance meat quality, and enhance their intestinal microecological balance and immunity.
    Keywords Medicine ; R
    Subject code 630
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: The Flora Compositions of Nitrogen-Fixing Bacteria and the Differential Expression of nifH Gene in Pennisetum giganteum z.x.lin Roots

    Biaosheng Lin / Jiamin Liu / Xue Zhang / Changren Weng / Zhanxi Lin

    BioMed Research International, Vol

    2021  Volume 2021

    Abstract: The flora compositions of nitrogen-fixing bacteria in roots of Pennisetum giganteum z.x.lin at different growth stages and the expression and copy number of nitrogen-fixing gene nifH were studied by Illumina Miseq second-generation sequencing technology ... ...

    Abstract The flora compositions of nitrogen-fixing bacteria in roots of Pennisetum giganteum z.x.lin at different growth stages and the expression and copy number of nitrogen-fixing gene nifH were studied by Illumina Miseq second-generation sequencing technology and qRT-PCR. The results showed that there were more than 40,000~50,000 effective sequences in 5 samples from the roots of P. giganteum, with Proteobacteria and Cyanobacteria as the dominant nitrogen-fixing bacteria based on the OTU species annotations for each sample and Bradyrhizobium as the core bacterial genera. The relative expression and quantitative change of nifH gene in roots of P. giganteum at different growth stages were consistent with the changes in the flora compositions of nitrogen-fixing microbia. Both revealed a changing trend with an initial increase and a sequential decrease, as well as changing order as jointing stage>maturation stage>tillering stage>seedling stage>dying stage. The relative expression and copy number of nifH gene were different in different growth stages, and the difference among groups basically reached a significant level (p<0.05). The relative expression and copy number of nifH gene at the jointing stage were the highest, and the 2-△△CT value was 4.43 folds higher than that at the seedling stage, with a copy number of 1.32×107/g. While at the dying stage, it was the lowest, and the 2-△△CT value was 0.67 folds, with a copy number of 0.31×107/g.
    Keywords Medicine ; R
    Subject code 580
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Effect of Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer on the growth, quality, soil fertility and bacterial community of pakchoi (Brassica chinensis L.).

    Yulei Jia / Zhen Liao / Huifang Chew / Lifang Wang / Biaosheng Lin / Chaoqian Chen / Guodong Lu / Zhanxi Lin

    PLoS ONE, Vol 15, Iss 2, p e

    2020  Volume 0228709

    Abstract: Biofertilizer plays a significant role in crop cultivation that had reduced its inorganic fertilizer use. The effects of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer on the growth, quality, ...

    Abstract Biofertilizer plays a significant role in crop cultivation that had reduced its inorganic fertilizer use. The effects of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer on the growth, quality, soil nutrients and diversity of the soil bacterial community in the rhizosphere soil of pakchoi were studied. The experiment composed of 6 treatments, including CK (no fertilization), DL (10% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), ZL (25% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), SL (50% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), FHF (100% inorganic fertilizer) and JZ (100% inorganic fertilizer combined with sterilized Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer). Compared with conventional fertilization, the 25% reduction in chemical fertilizer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer resulted in higher plant height, plant weight, chlorophyll content, soluble protein content, soluble sugar content, vitamin C content, alkali hydrolyzed nitrogen content, available phosphorus content, available potassium content and organic matter content in pakchoi, and these variables increased by 11.81%, 8.54%, 7.37%, 16.88%, 17.05%, 23.70%, 24.24%, 36.56%, 21.09% and 19.72%, respectively. In addition, the 25% reduction in chemical fertilizer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer also had the lowest nitrate content, which was 53.86% lower than that with conventional fertilization. Different fertilizer treatments had a significant effect on the soil bacterial community structure. Compared with conventional fertilization, the coapplication of Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer and inorganic fertilizer significantly increased the relative abundance of ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 630
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600

    Biaosheng Lin / Zhijuan Li / Huixia Zhang / Jiangwen Wu / Maochun Luo

    BioMed Research International, Vol

    2016  Volume 2016

    Abstract: To clone and express the γ-polyglutamic acid (γ-PGA) synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed ... ...

    Abstract To clone and express the γ-polyglutamic acid (γ-PGA) synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. The expression product was secreted extracellularly into the fermentation broth, with a product yield of 1.74 g/L or higher. γ-PGA samples from the fermentation broth were purified and characterized. Hydrolysates of γ-PGA presented in single form, constituting simple glutamic acid only, which matched the characteristics of the infrared spectra of the γ-PGA standard, and presented as multimolecular aggregates with a molecular weight within the range of 500–600 kDa. Expressing the γ-PGA synthetase gene pgsBCA in B. subtilis system has potential industrial applications.
    Keywords Medicine ; R
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Hindawi Publishing Corporation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top