LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Direct contribution of skeletal muscle mesenchymal progenitors to bone repair

    Anais Julien / Anuya Kanagalingam / Ester Martínez-Sarrà / Jérome Megret / Marine Luka / Mickaël Ménager / Frédéric Relaix / Céline Colnot

    Nature Communications, Vol 12, Iss 1, Pp 1-

    2021  Volume 14

    Abstract: Bone regeneration involves activation of tissue resident stem cells. Here the authors show that mesenchymal progenitors from skeletal muscle mediate the fibrotic response to bone injury and also contribute to bone repair; processes that are impaired when ...

    Abstract Bone regeneration involves activation of tissue resident stem cells. Here the authors show that mesenchymal progenitors from skeletal muscle mediate the fibrotic response to bone injury and also contribute to bone repair; processes that are impaired when both muscle and bone are injured.
    Keywords Science ; Q
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin

    Oriane Duchamp de Lageneste / Anaïs Julien / Rana Abou-Khalil / Giulia Frangi / Caroline Carvalho / Nicolas Cagnard / Corinne Cordier / Simon J. Conway / Céline Colnot

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 15

    Abstract: The periosteum, a tissue lining the bone surface, and the bone marrow are known to contain bone-forming cells. Here the authors show that skeletal stem cells reside in the mouse periosteum, and that periosteal cells have common embryonic origins with ... ...

    Abstract The periosteum, a tissue lining the bone surface, and the bone marrow are known to contain bone-forming cells. Here the authors show that skeletal stem cells reside in the mouse periosteum, and that periosteal cells have common embryonic origins with bone marrow stromal/stem cells (BMSCs), but are better at bone repair and long-term integration than BMSCs.
    Keywords Science ; Q
    Language English
    Publishing date 2018-02-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin

    Oriane Duchamp de Lageneste / Anaïs Julien / Rana Abou-Khalil / Giulia Frangi / Caroline Carvalho / Nicolas Cagnard / Corinne Cordier / Simon J. Conway / Céline Colnot

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 15

    Abstract: The periosteum, a tissue lining the bone surface, and the bone marrow are known to contain bone-forming cells. Here the authors show that skeletal stem cells reside in the mouse periosteum, and that periosteal cells have common embryonic origins with ... ...

    Abstract The periosteum, a tissue lining the bone surface, and the bone marrow are known to contain bone-forming cells. Here the authors show that skeletal stem cells reside in the mouse periosteum, and that periosteal cells have common embryonic origins with bone marrow stromal/stem cells (BMSCs), but are better at bone repair and long-term integration than BMSCs.
    Keywords Science ; Q
    Language English
    Publishing date 2018-02-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Site specific effects of zoledronic acid during tibial and mandibular fracture repair.

    Yan Yiu Yu / Shirley Lieu / Diane Hu / Theodore Miclau / Céline Colnot

    PLoS ONE, Vol 7, Iss 2, p e

    2012  Volume 31771

    Abstract: Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone ... ...

    Abstract Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2

    Shirley Lieu / Erik Hansen / Russell Dedini / Danielle Behonick / Zena Werb / Theodore Miclau / Ralph Marcucio / Céline Colnot

    Disease Models & Mechanisms, Vol 4, Iss 2, Pp 203-

    2011  Volume 211

    Abstract: SUMMARY The matrix metalloproteinase (MMP) family of extracellular proteases performs crucial roles in development and repair of the skeleton owing to their ability to remodel the extracellular matrix (ECM) and release bioactive molecules. Most MMP-null ... ...

    Abstract SUMMARY The matrix metalloproteinase (MMP) family of extracellular proteases performs crucial roles in development and repair of the skeleton owing to their ability to remodel the extracellular matrix (ECM) and release bioactive molecules. Most MMP-null skeletal phenotypes that have been previously described are mild, thus permitting the assessment of their functions during bone repair in the adult. In humans and mice, MMP2 deficiency causes a musculoskeletal phenotype. In this study, we assessed the role of MMP2 during mouse fracture repair and compared it with the roles of MMP9 and MMP13. Mmp2 was expressed at low levels in the normal skeleton and was broadly expressed in the fracture callus. Treatment of wild-type mice with a general MMP inhibitor, GM6001, caused delayed cartilage remodeling and bone formation during fracture repair, which resembles the defect observed in Mmp9–/– mice. Unlike Mmp9- and Mmp13-null mutations, which affect both cartilage and bone in the callus, the Mmp2-null mutation delayed bone remodeling but not cartilage remodeling. This remodeling defect occurred without changes in either osteoclast recruitment or vascular invasion of the fracture callus compared with wild type. However, we did not detect changes in expression of Mmp9, Mmp13 or Mt1-Mmp (Mmp14) in the calluses of Mmp2-null mice compared with wild type by in situ hybridization, but we observed decreased expression of Timp2 in the calluses of Mmp2-, Mmp9- and Mmp13-null mice. In keeping with the skeletal phenotype of Mmp2-null mice, MMP2 plays a role in the remodeling of new bone within the fracture callus and impacts later stages of bone repair compared with MMP9 and MMP13. Taken together, our results indicate that MMPs play unique and distinct roles in regulating skeletal tissue deposition and remodeling during fracture repair.
    Keywords Medicine ; R ; Pathology ; RB1-214
    Subject code 616
    Language English
    Publishing date 2011-03-01T00:00:00Z
    Publisher The Company of Biologists
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration.

    Danielle J Behonick / Zhiqing Xing / Shirley Lieu / Jenni M Buckley / Jeffrey C Lotz / Ralph S Marcucio / Zena Werb / Theodore Miclau / Céline Colnot

    PLoS ONE, Vol 2, Iss 11, p e

    2007  Volume 1150

    Abstract: Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study ...

    Abstract Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2007-11-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top