LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Fire Weather Index

    F. Di Giuseppe / C. Vitolo / B. Krzeminski / C. Barnard / P. Maciel / J. San-Miguel

    Natural Hazards and Earth System Sciences, Vol 20, Pp 2365-

    the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system

    2020  Volume 2378

    Abstract: In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The ... ...

    Abstract In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The use of weather forecasts in place of local observations can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using 1 year of pre-operational service in 2017 and the Fire Weather Index (FWI), here we assess the capability of the system globally and analyse in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 d when compared to the use of mean climate, making a case for extending the forecast range to the sub-seasonal to seasonal timescale. However, accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed, when all fires detected in 2017 are considered, including agricultural- and human-induced burning, high FWI values only occur in 50 % of the cases and are limited to the Boreal regions. Nevertheless for very large events which were driven by weather conditions, FWI forecasts provide advance warning that could be instrumental in setting up management and containment strategies.
    Keywords Environmental technology. Sanitary engineering ; TD1-1066 ; Geography. Anthropology. Recreation ; G ; Environmental sciences ; GE1-350 ; Geology ; QE1-996.5
    Subject code 333
    Language English
    Publishing date 2020-08-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Using R in hydrology

    L. J. Slater / G. Thirel / S. Harrigan / O. Delaigue / A. Hurley / A. Khouakhi / I. Prosdocimi / C. Vitolo / K. Smith

    Hydrology and Earth System Sciences, Vol 23, Pp 2939-

    a review of recent developments and future directions

    2019  Volume 2963

    Abstract: The open-source programming language R has gained a central place in the hydrological sciences over the last decade, driven by the availability of diverse hydro-meteorological data archives and the development of open-source computational tools. The ... ...

    Abstract The open-source programming language R has gained a central place in the hydrological sciences over the last decade, driven by the availability of diverse hydro-meteorological data archives and the development of open-source computational tools. The growth of R's usage in hydrology is reflected in the number of newly published hydrological packages, the strengthening of online user communities, and the popularity of training courses and events. In this paper, we explore the benefits and advantages of R's usage in hydrology, such as the democratization of data science and numerical literacy, the enhancement of reproducible research and open science, the access to statistical tools, the ease of connecting R to and from other languages, and the support provided by a growing community. This paper provides an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology and useful tools to overcome them, including the use of hydrological libraries, documentation, and vignettes (long-form guides that illustrate how to use packages); the role of integrated development environments (IDEs); and the challenges of big data and parallel computing in hydrology. Lastly, this paper provides a roadmap for R's future within hydrology, with R packages as a driver of progress in the hydrological sciences, application programming interfaces (APIs) providing new avenues for data acquisition and provision, enhanced teaching of hydrology in R, and the continued growth of the community via short courses and events.
    Keywords Technology ; T ; Environmental technology. Sanitary engineering ; TD1-1066 ; Geography. Anthropology. Recreation ; G ; Environmental sciences ; GE1-350
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top