LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Ihre letzten Suchen

  1. AU="Carvajal-Maldonado, Denisse"
  2. AU="Gallagher, Julia E"
  3. AU="Skelin, Ivan"
  4. AU="Pinarli, Faruk Güçlü"
  5. AU=Carmina E
  6. AU=Abi-Rafeh Jad
  7. AU="Jalil, Yorschua F"
  8. AU="Barber, M"
  9. AU="Ritt, Luiz Eduardo Fonteles"
  10. AU="Qiu, Jiajing"
  11. AU=Wang Heping
  12. AU="Miyazaki, Masashi"
  13. AU="R Kulkarni"
  14. AU="Braga, D."
  15. AU="Mwenda, Mulenga"
  16. AU="Li, Baohua"
  17. AU="Zhang, Nasen Jonathan"
  18. AU="Scotlandi, Katia"
  19. AU="Thomson, M A"
  20. AU=New Sophie E P
  21. AU="Fenrich, Craig A"
  22. AU="Staehelin, Cornelia"
  23. AU="Akhtar, Suraiya"
  24. AU="Georgel, Philippe"
  25. AU="Gruenewald, Leon D"
  26. AU="Charron, Morgane"
  27. AU="Leona S. Alizadeh" AU="Leona S. Alizadeh"
  28. AU="Soriano, Stéphane"
  29. AU="Lin, Pao-Yen"
  30. AU="Mudali, Gayathri"
  31. AU="McElveen, John T"
  32. AU="Kraimps, Jean-Louis"
  33. AU="Patel, Sheila K"
  34. AU="Zian, Zeineb"
  35. AU="Langley, Jonathan"
  36. AU="Bell, Thomas G."
  37. AU="Harris, Charles"
  38. AU="Lai, Renfa"
  39. AU="Sakane, Tatsuya"
  40. AU="Mirza, I."
  41. AU="Beatriz Amorim Beltrão"
  42. AU="Wildman, D"
  43. AU="Manghi, Manoel"
  44. AU="van Dinther, Maarten"
  45. AU="Adams, Ashley L"
  46. AU="Zhang, Er-Bin"
  47. AU="Diuk-Wasser, Maria A"
  48. AU="Chowdhury, Muhtamim"
  49. AU="Rivas, Manuel A"
  50. AU="Mangelis, Anastasios"
  51. AU="Simpson, Tina Y"
  52. AU="Li, Peirang"
  53. AU="Zhang, Zhao-Liang"
  54. AU="Perner, Sven"
  55. AU=Suwanwongse Kulachanya AU=Suwanwongse Kulachanya
  56. AU="Rose, Jacqueline"
  57. AU="E Lostis"

Suchergebnis

Treffer 1 - 8 von insgesamt 8

Suchoptionen

  1. Artikel ; Online: Human DNA polymerase θ does not harbor intrinsic nuclease activity.

    Carvajal-Maldonado, Denisse / Zahn, Karl / Jensen, Ryan / Wood, Richard D / Doublié, Sylvie

    Molecular cell

    2024  Band 84, Heft 8, Seite(n) 1394–1395

    Mesh-Begriff(e) Humans ; DNA Polymerase theta ; DNA-Directed DNA Polymerase/genetics ; Mutation
    Chemische Substanzen DNA Polymerase theta (EC 2.7.7.-) ; DNA-Directed DNA Polymerase (EC 2.7.7.7) ; POLQ protein, human (EC 2.7.7.-)
    Sprache Englisch
    Erscheinungsdatum 2024-04-17
    Erscheinungsland United States
    Dokumenttyp Letter
    ZDB-ID 1415236-8
    ISSN 1097-4164 ; 1097-2765
    ISSN (online) 1097-4164
    ISSN 1097-2765
    DOI 10.1016/j.molcel.2024.03.009
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Regulating Polθ in Breast Cancer.

    Carvajal-Maldonado, Denisse / Wood, Richard D

    Cancer research

    2021  Band 81, Heft 6, Seite(n) 1441–1442

    Abstract: DNA polymerase θ, a protein encoded by ... ...

    Abstract DNA polymerase θ, a protein encoded by the
    Mesh-Begriff(e) Breast Neoplasms/genetics ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; Female ; Humans ; Mutagens ; Transcription Factors ; Zinc Finger E-box-Binding Homeobox 1
    Chemische Substanzen Mutagens ; Transcription Factors ; ZEB1 protein, human ; Zinc Finger E-box-Binding Homeobox 1
    Sprache Englisch
    Erscheinungsdatum 2021-03-15
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Comment
    ZDB-ID 1432-1
    ISSN 1538-7445 ; 0008-5472
    ISSN (online) 1538-7445
    ISSN 0008-5472
    DOI 10.1158/0008-5472.CAN-20-4253
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  3. Artikel: When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer.

    Carvajal-Maldonado, Denisse / Drogalis Beckham, Lea / Wood, Richard D / Doublié, Sylvie

    Frontiers in molecular biosciences

    2022  Band 8, Seite(n) 815845

    Abstract: DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform ... ...

    Abstract DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3'-5' exonuclease, 5' nuclease, or end-trimming nuclease) or lyase (5' dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.
    Sprache Englisch
    Erscheinungsdatum 2022-01-07
    Erscheinungsland Switzerland
    Dokumenttyp Journal Article ; Review
    ZDB-ID 2814330-9
    ISSN 2296-889X
    ISSN 2296-889X
    DOI 10.3389/fmolb.2021.815845
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  4. Artikel ; Online: DNA Fiber Analysis: Mind the Gap!

    Quinet, Annabel / Carvajal-Maldonado, Denisse / Lemacon, Delphine / Vindigni, Alessandro

    Methods in enzymology

    2017  Band 591, Seite(n) 55–82

    Abstract: Understanding the mechanisms of replication stress response following genotoxic stress induction is rapidly emerging as a central theme in cell survival and human disease. The DNA fiber assay is one of the most powerful tools to study alterations in ... ...

    Abstract Understanding the mechanisms of replication stress response following genotoxic stress induction is rapidly emerging as a central theme in cell survival and human disease. The DNA fiber assay is one of the most powerful tools to study alterations in replication fork dynamics genome-wide at single-molecule resolution. This approach relies on the ability of many organisms to incorporate thymidine analogs into replicating DNA and is widely used to study how genotoxic agents perturb DNA replication. Here, we review different approaches available to prepare DNA fibers and discuss important limitations of each approach. We also review how DNA fiber analysis can be used to shed light upon several replication parameters including fork progression, restart, termination, and new origin firing. Next, we discuss a modified DNA fiber protocol to monitor the presence of single-stranded DNA (ssDNA) gaps on ongoing replication forks. ssDNA gaps are very common intermediates of several replication stress response mechanisms, but they cannot be detected by standard DNA fiber approaches due to the resolution limits of this technique. We discuss a novel strategy that relies on the use of an ssDNA-specific endonuclease to nick the ssDNA gaps and generate shorter DNA fibers that can be used as readout for the presence of ssDNA gaps. Finally, we describe a follow-up DNA fiber approach that can be used to study how ssDNA gaps are repaired postreplicatively.
    Mesh-Begriff(e) DNA/chemistry ; DNA Replication/drug effects ; Mutagens/pharmacology
    Chemische Substanzen Mutagens ; DNA (9007-49-2)
    Sprache Englisch
    Erscheinungsdatum 2017-05-03
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Review ; Research Support, U.S. Gov't, Non-P.H.S. ; Research Support, N.I.H., Extramural
    ISSN 1557-7988 ; 0076-6879
    ISSN (online) 1557-7988
    ISSN 0076-6879
    DOI 10.1016/bs.mie.2017.03.019
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  5. Artikel: PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells

    Quinet, Annabel / Tirman, Stephanie / Jackson, Jessica / Šviković, Saša / Lemaçon, Delphine / Carvajal-Maldonado, Denisse / González-Acosta, Daniel / Vessoni, Alexandre T / Cybulla, Emily / Wood, Matthew / Tavis, Steven / Batista, Luis F.Z / Méndez, Juan / Sale, Julian E / Vindigni, Alessandro

    Molecular cell. 2020 Feb. 06, v. 77, no. 3

    2020  

    Abstract: Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no ... ...

    Abstract Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.
    Schlagwörter DNA damage ; DNA replication ; chromatin ; cisplatin ; drug therapy ; electron microscopy ; neoplasm cells ; neoplasms ; single-stranded DNA
    Sprache Englisch
    Erscheinungsverlauf 2020-0206
    Umfang p. 461-474.e9.
    Erscheinungsort Elsevier Inc.
    Dokumenttyp Artikel
    ZDB-ID 1415236-8
    ISSN 1097-4164 ; 1097-2765
    ISSN (online) 1097-4164
    ISSN 1097-2765
    DOI 10.1016/j.molcel.2019.10.008
    Datenquelle NAL Katalog (AGRICOLA)

    Zusatzmaterialien

    Kategorien

  6. Artikel ; Online: Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function.

    Byrum, Andrea K / Carvajal-Maldonado, Denisse / Mudge, Miranda C / Valle-Garcia, David / Majid, Mona C / Patel, Romil / Sowa, Mathew E / Gygi, Steven P / Harper, J Wade / Shi, Yang / Vindigni, Alessandro / Mosammaparast, Nima

    The Journal of cell biology

    2019  Band 218, Heft 2, Seite(n) 422–432

    Abstract: 53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays ...

    Abstract 53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function. Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination. Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCA1. Strikingly, concurrent loss of 53BP1 rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for 53BP1 in replication fork stability.
    Mesh-Begriff(e) Animals ; Aurora Kinase A/genetics ; Aurora Kinase A/metabolism ; BRCA1 Protein/genetics ; BRCA1 Protein/metabolism ; Cell Cycle Proteins/genetics ; Cell Cycle Proteins/metabolism ; DNA Replication ; HeLa Cells ; Homologous Recombination ; Humans ; MRE11 Homologue Protein/genetics ; MRE11 Homologue Protein/metabolism ; Mice ; Microtubule-Associated Proteins/genetics ; Microtubule-Associated Proteins/metabolism ; Mitosis ; Rad51 Recombinase/genetics ; Rad51 Recombinase/metabolism ; Tumor Suppressor p53-Binding Protein 1/genetics ; Tumor Suppressor p53-Binding Protein 1/metabolism
    Chemische Substanzen BRCA1 Protein ; BRCA1 protein, human ; Cell Cycle Proteins ; MRE11 protein, human ; Microtubule-Associated Proteins ; TP53BP1 protein, human ; TPX2 protein, human ; Tumor Suppressor p53-Binding Protein 1 ; AURKA protein, human (EC 2.7.11.1) ; Aurora Kinase A (EC 2.7.11.1) ; RAD51 protein, human (EC 2.7.7.-) ; Rad51 Recombinase (EC 2.7.7.-) ; MRE11 Homologue Protein (EC 3.1.-)
    Sprache Englisch
    Erscheinungsdatum 2019-01-02
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 218154-x
    ISSN 1540-8140 ; 0021-9525
    ISSN (online) 1540-8140
    ISSN 0021-9525
    DOI 10.1083/jcb.201803003
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  7. Artikel ; Online: Perturbing cohesin dynamics drives MRE11 nuclease-dependent replication fork slowing.

    Carvajal-Maldonado, Denisse / Byrum, Andrea K / Jackson, Jessica / Wessel, Sarah / Lemaçon, Delphine / Guitton-Sert, Laure / Quinet, Annabel / Tirman, Stephanie / Graziano, Simona / Masson, Jean-Yves / Cortez, David / Gonzalo, Susana / Mosammaparast, Nima / Vindigni, Alessandro

    Nucleic acids research

    2018  Band 47, Heft 3, Seite(n) 1294–1310

    Abstract: Pds5 is required for sister chromatid cohesion, and somewhat paradoxically, to remove cohesin from chromosomes. We found that Pds5 plays a critical role during DNA replication that is distinct from its previously known functions. Loss of Pds5 hinders ... ...

    Abstract Pds5 is required for sister chromatid cohesion, and somewhat paradoxically, to remove cohesin from chromosomes. We found that Pds5 plays a critical role during DNA replication that is distinct from its previously known functions. Loss of Pds5 hinders replication fork progression in unperturbed human and mouse cells. Inhibition of MRE11 nuclease activity restores fork progression, suggesting that Pds5 protects forks from MRE11-activity. Loss of Pds5 also leads to double-strand breaks, which are again reduced by MRE11 inhibition. The replication function of Pds5 is independent of its previously reported interaction with BRCA2. Unlike Pds5, BRCA2 protects forks from nucleolytic degradation only in the presence of genotoxic stress. Moreover, our iPOND analysis shows that the loading of Pds5 and other cohesion factors on replication forks is not affected by the BRCA2 status. Pds5 role in DNA replication is shared by the other cohesin-removal factor Wapl, but not by the cohesin complex component Rad21. Interestingly, depletion of Rad21 in a Pds5-deficient background rescues the phenotype observed upon Pds5 depletion alone. These findings support a model where loss of either component of the cohesin releasin complex perturbs cohesin dynamics on replication forks, hindering fork progression and promoting MRE11-dependent fork slowing.
    Mesh-Begriff(e) BRCA2 Protein/genetics ; Cell Cycle Proteins/genetics ; Cell Line, Tumor ; Chromatids/genetics ; Chromosomal Proteins, Non-Histone/genetics ; DNA Damage/genetics ; DNA Replication/genetics ; DNA-Binding Proteins ; Deoxyribonucleases/genetics ; Humans ; MRE11 Homologue Protein/genetics ; Nuclear Proteins/genetics ; Phosphoproteins/genetics ; Sister Chromatid Exchange/genetics ; Cohesins
    Chemische Substanzen BRCA2 Protein ; Cell Cycle Proteins ; Chromosomal Proteins, Non-Histone ; DNA-Binding Proteins ; MRE11 protein, human ; Nuclear Proteins ; PDS5A protein, human ; Phosphoproteins ; RAD21 protein, human ; Deoxyribonucleases (EC 3.1.-) ; MRE11 Homologue Protein (EC 3.1.-)
    Sprache Englisch
    Erscheinungsdatum 2018-06-18
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 186809-3
    ISSN 1362-4962 ; 1362-4954 ; 0301-5610 ; 0305-1048
    ISSN (online) 1362-4962 ; 1362-4954
    ISSN 0301-5610 ; 0305-1048
    DOI 10.1093/nar/gky519
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  8. Artikel ; Online: PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells.

    Quinet, Annabel / Tirman, Stephanie / Jackson, Jessica / Šviković, Saša / Lemaçon, Delphine / Carvajal-Maldonado, Denisse / González-Acosta, Daniel / Vessoni, Alexandre T / Cybulla, Emily / Wood, Matthew / Tavis, Steven / Batista, Luis F Z / Méndez, Juan / Sale, Julian E / Vindigni, Alessandro

    Molecular cell

    2019  Band 77, Heft 3, Seite(n) 461–474.e9

    Abstract: Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no ... ...

    Abstract Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.
    Mesh-Begriff(e) Cell Line, Tumor ; DNA/genetics ; DNA Damage/genetics ; DNA Damage/physiology ; DNA Helicases/genetics ; DNA Helicases/metabolism ; DNA Primase/metabolism ; DNA Primase/physiology ; DNA Replication/drug effects ; DNA Replication/genetics ; DNA Replication/physiology ; DNA, Single-Stranded/genetics ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; DNA-Directed DNA Polymerase/metabolism ; DNA-Directed DNA Polymerase/physiology ; HEK293 Cells ; Humans ; Multifunctional Enzymes/metabolism ; Multifunctional Enzymes/physiology ; Ubiquitin-Protein Ligases/genetics ; Ubiquitin-Protein Ligases/metabolism
    Chemische Substanzen DNA, Single-Stranded ; DNA-Binding Proteins ; Multifunctional Enzymes ; DNA (9007-49-2) ; BRAP protein, human (EC 2.3.2.27) ; Ubiquitin-Protein Ligases (EC 2.3.2.27) ; DNA Primase (EC 2.7.7.-) ; PrimPol protein, human (EC 2.7.7.-) ; SMARCAL1 protein, human (EC 2.7.7.-) ; DNA-Directed DNA Polymerase (EC 2.7.7.7) ; DNA Helicases (EC 3.6.4.-)
    Sprache Englisch
    Erscheinungsdatum 2019-10-29
    Erscheinungsland United States
    Dokumenttyp Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
    ZDB-ID 1415236-8
    ISSN 1097-4164 ; 1097-2765
    ISSN (online) 1097-4164
    ISSN 1097-2765
    DOI 10.1016/j.molcel.2019.10.008
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang