LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Suchergebnis

Treffer 1 - 10 von insgesamt 20

Suchoptionen

  1. Artikel ; Online: Novel Insight into the Serum Sphingolipid Fingerprint Characterizing Longevity

    Pietro Barbacini / Enrica Torretta / Beatrice Arosio / Evelyn Ferri / Daniele Capitanio / Manuela Moriggi / Cecilia Gelfi

    International Journal of Molecular Sciences, Vol 23, Iss 2428, p

    2022  Band 2428

    Abstract: Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species ... ...

    Abstract Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old) and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.
    Schlagwörter sphingolipids ; mass spectrometry ; nitric oxide ; ROS ; longevity ; aging ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Sprache Englisch
    Erscheinungsdatum 2022-02-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Effects of tele-prehabilitation on clinical and muscular recovery in patients awaiting knee replacement

    David Beckwée / Silvia Gianola / Greta Castellini / Cecilia Gelfi / Stefania Guida / Jacopo Vitale / Eva Swinnen / Enrica Torretta / Laura Mangiavini

    BMJ Open, Vol 13, Iss

    protocol of a randomised controlled trial

    2023  Band 10

    Abstract: Background The increasing prevalence of knee osteoarthritis and total knee arthroplasty (TKA) impose a significant socioeconomic burden in developed and developing countries. Prehabilitation (rehabilitation in the weeks immediately before surgery) may be ...

    Abstract Background The increasing prevalence of knee osteoarthritis and total knee arthroplasty (TKA) impose a significant socioeconomic burden in developed and developing countries. Prehabilitation (rehabilitation in the weeks immediately before surgery) may be crucial to prepare patients for surgery improving outcomes and reducing assistance costs. Moreover, considering the progress of telemedicine, candidates for TKA could potentially benefit from a tele-prehabilitation programme. We aim to evaluate the effects of a home-based tele-prehabilitation program for patients waiting for total knee replacement.Methods and analysis Forty-eight male patients, aged 65–80, on a waiting list for TKA will be recruited and randomly assigned to the tele-prehabilitation intervention or control groups. Both groups will undergo the same 6-week exercise program (five sessions/week) and the same educational session (one per week). The tele-prehabilitation group will perform asynchronous sessions using a tablet, two accelerometers and a balance board (Khymeia, Padova, Italy), while the control group will use a booklet. The Western Ontario and McMaster Universities Osteoarthritis Index Questionnaire, at the end of the prehabilitation, will be the primary outcome. Secondary outcomes will include self-reported outcomes, performance tests and change in expressions of blood and muscle biomarkers. Ten healthy subjects, aged 18–30, will be also recruited for muscle and blood samples collection. They will not undergo any intervention and their data will be used as benchmarks for the intervention and control groups’ analyses.Ethics and dissemination This randomised controlled trial will be conducted in accordance with the ethical principles of the Declaration of Helsinki. This study has been approved by the Ethics Committee of Vita-Salute San Raffaele University (Milan, Italy. No. 50/INT/2022). The research results will be published in peer-reviewed publications.Trial registration number NCT05668312.
    Schlagwörter Medicine ; R
    Thema/Rubrik (Code) 796
    Sprache Englisch
    Erscheinungsdatum 2023-10-01T00:00:00Z
    Verlag BMJ Publishing Group
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  3. Artikel ; Online: Matrix Metalloproteinases Inhibition by Doxycycline Rescues Extracellular Matrix Organization and Partly Reverts Myofibroblast Differentiation in Hypermobile Ehlers-Danlos Syndrome Dermal Fibroblasts

    Nicola Chiarelli / Nicoletta Zoppi / Marina Venturini / Daniele Capitanio / Cecilia Gelfi / Marco Ritelli / Marina Colombi

    Cells, Vol 10, Iss 3236, p

    A Potential Therapeutic Target?

    2021  Band 3236

    Abstract: Hypermobile Ehlers-Danlos syndrome (hEDS) is the most frequent type of EDS and is characterized by generalized joint hypermobility and musculoskeletal manifestations which are associated with chronic pain, and mild skin involvement along with the ... ...

    Abstract Hypermobile Ehlers-Danlos syndrome (hEDS) is the most frequent type of EDS and is characterized by generalized joint hypermobility and musculoskeletal manifestations which are associated with chronic pain, and mild skin involvement along with the presence of more than a few comorbid conditions. Despite numerous research efforts, no causative gene(s) or validated biomarkers have been identified and insights into the disease-causing mechanisms remain scarce. Variability in the spectrum and severity of symptoms and progression of hEDS patients’ phenotype likely depend on a combination of age, gender, lifestyle, and the probable multitude of genes involved in hEDS. However, considering the clinical overlap with other EDS forms, which lead to abnormalities in extracellular matrix (ECM), it is plausible that the mechanisms underlying hEDS pathogenesis also affect the ECM to a certain extent. Herein, we performed a series of in vitro studies on the secretome of hEDS dermal fibroblasts that revealed a matrix metalloproteinases (MMPs) dysfunction as one of the major disease drivers by causing a detrimental feedback loop of excessive ECM degradation coupled with myofibroblast differentiation. We demonstrated that doxycycline-mediated inhibition of MMPs rescues in hEDS cells a control-like ECM organization and induces a partial reversal of their myofibroblast-like features, thus offering encouraging clues for translational studies confirming MMPs as a potential therapeutic target in hEDS with the expectation to improve patients’ quality of life and alleviate their disabilities.
    Schlagwörter doxycycline ; extracellular matrix ; hypermobile Ehlers-Danlos syndrome ; matrix metalloproteinases ; myofibroblasts ; secretome ; Biology (General) ; QH301-705.5
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2021-11-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  4. Artikel ; Online: Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin

    Daniele Capitanio / Manuela Moriggi / Pietro Barbacini / Enrica Torretta / Isabella Moroni / Flavia Blasevich / Lucia Morandi / Marina Mora / Cecilia Gelfi

    International Journal of Molecular Sciences, Vol 23, Iss 2624, p

    2022  Band 2624

    Abstract: BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named ... ...

    Abstract BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance.
    Schlagwörter muscle dystrophy ; sarcopenia ; muscle regeneration ; muscle–bone interaction ; LC-ESI-MS/MS ; 2-D DIGE ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2022-02-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  5. Artikel ; Online: Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators

    Enrico Ragni / Marco Viganò / Enrica Torretta / Carlotta Perucca Orfei / Alessandra Colombini / Carlo Tremolada / Cecilia Gelfi / Laura de Girolamo

    Journal of Clinical Medicine, Vol 11, Iss 8, p

    2022  Band 2231

    Abstract: The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes ...

    Abstract The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a thorough fingerprint of released molecules is largely missing. The purpose of this study was to first characterize both structure and cell content of unprocessed lipoaspirate (LA) and µFAT, and further identify and frame the array of signaling factors in the context of OA disease, by means of high throughput qRT-PCR for extracellular-vesicle (EV) embedded miRNAs and proteomics for tissue and secreted factors. Cell count showed reduction of blood cells in µFAT, confirmed by histological and flow cytometry analyses, that also showed a conserved presence of structural, endothelial and stromal components and pericytes. In the secretome, 376 and 381 EV-miRNAs in LA and µFAT, respectively, were identified. In particular, most abundant and µFAT upregulated EV-miRNAs were mainly recapitulating those already reported as ASC-EVs-specific, with crucial roles in cartilage protection and M2 macrophage polarization, while only a scarce presence of those related to blood cells emerged. Furthermore, secretome proteomic analysis revealed reduction in µFAT of acute phase factors driving OA progression. Taken together, these results suggest that processing of LA into µFAT allows for removal of blood elements and maintenance of tissue structure and stromal cell populations, and possibly the increase of OA-protective molecular features. Thus, microfragmentation represents a safe and efficient method for the application of adipose tissue properties in the frame of musculoskeletal disorders.
    Schlagwörter osteoarthritis ; regenerative medicine ; adipose tissue ; lipoaspirate ; microfragmentation ; mesenchymal stromal cells ; Medicine ; R
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2022-04-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  6. Artikel ; Online: Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease

    Manuela Moriggi / Daniele Capitanio / Enrica Torretta / Pietro Barbacini / Cinzia Bragato / Patrizia Sartori / Maurizio Moggio / Lorenzo Maggi / Marina Mora / Cecilia Gelfi

    International Journal of Molecular Sciences, Vol 22, Iss 2850, p

    2021  Band 2850

    Abstract: Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), ...

    Abstract Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient’s outcome.
    Schlagwörter pompe disease ; sarcopenia ; autophagy ; rare disease ; proteomics ; mass spectrometry ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2021-03-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  7. Artikel ; Online: Regulation of Serum Sphingolipids in Andean Children Born and Living at High Altitude (3775 m)

    Pietro Barbacini / Josefina Casas / Enrica Torretta / Daniele Capitanio / Gustavo Maccallini / Valeria Hirschler / Cecilia Gelfi

    International Journal of Molecular Sciences, Vol 20, Iss 11, p

    2019  Band 2835

    Abstract: Recent studies on Andean children indicate a prevalence of dyslipidemia and hypertension compared to dwellers at lower altitudes, suggesting that despite similar food intake and daily activities, they undergo different metabolic adaptations. In the ... ...

    Abstract Recent studies on Andean children indicate a prevalence of dyslipidemia and hypertension compared to dwellers at lower altitudes, suggesting that despite similar food intake and daily activities, they undergo different metabolic adaptations. In the present study, the sphingolipid pattern was investigated in serum of 7 underweight (UW), 30 normal weight (NW), 13 overweight (OW), and 9 obese (O) Andean children by liquid chromatography-mass spectrometry (LC-MS). Results indicate that levels of Ceramides (Cers) and sphingomyelins (SMs) correlate positively with biochemical parameters (except for Cers and Vitamin D, which correlate negatively), whereas sphingosine-1-phosphate (S1P) correlates negatively. Correlation results and LC-MS data identify the axis high density lipoprotein-cholesterol (HDL-C), Cers, and S1P as related to hypoxia adaptation. Specifically UW children are characterized by increased levels of S1P compared to O and lower levels of Cers compared to NW children. Furthermore, O children show lower levels of S1P and similar levels of Cers and SMs as NW. In conclusion, our results indicate that S1P is the primary target of hypoxia adaptation in Andean children, and its levels are associated with hypoxia tolerance. Furthermore, S1P can act as marker of increased risk of metabolic syndrome and cardiac dysfunction in young Andeans living at altitude.
    Schlagwörter high-altitude hypoxia ; dyslipidemia ; sphingolipids ; ceramides ; sphingosine-1-phosphate ; sphingomyelins ; LC-MS/MS ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2019-06-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  8. Artikel ; Online: Author Correction

    Enrica Torretta / Beatrice Arosio / Pietro Barbacini / Martina Casati / Daniele Capitanio / Roberta Mancuso / Daniela Mari / Matteo Cesari / Mario Clerici / Cecilia Gelfi

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    Particular CSF sphingolipid patterns identify iNPH and AD patients

    2020  Band 1

    Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper. ...

    Abstract An amendment to this paper has been published and can be accessed via a link at the top of the paper.
    Schlagwörter Medicine ; R ; Science ; Q
    Sprache Englisch
    Erscheinungsdatum 2020-06-01T00:00:00Z
    Verlag Nature Publishing Group
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  9. Artikel: HPTLC‐MALDI MS for (glyco)sphingolipid multiplexing in tissues and blood: A promising strategy for biomarker discovery and clinical applications

    Torretta, Enrica / Chiara Fania / Michele Vasso / Cecilia Gelfi

    Electrophoresis. 2016 July, v. 37, no. 14

    2016  

    Abstract: Sphingolipids have hydrophilic and hydrophobic properties, different saturation and combination of the oligosaccharide chains and mass homology of species located in a narrow m/z region hampering their recognition. To target sphingolipids for diagnostic ... ...

    Abstract Sphingolipids have hydrophilic and hydrophobic properties, different saturation and combination of the oligosaccharide chains and mass homology of species located in a narrow m/z region hampering their recognition. To target sphingolipids for diagnostic purposes, standardized methods for lipid extraction, quali‐ and quantitative assessments are required. In this study, HPTLC‐MALDI MS was adopted to establish sphingolipid and glycosphingolipid profiles in muscle, brain and serum to create a database of molecules to be searched in the preclinical and clinical investigations. Specific protocols for lipid extraction were set up based on the characteristics of the tissue or/and fluids; this approach maximizes the HPTLC‐MALDI MS analytical throughput both for lipids extracted in organic and aqueous phase. This study indicates that alkaline hydrolysis is necessary for the detection of low abundant species such as Gb3Cer and ceramides in serum and Gb4Cer, CerP and HexCer in muscle tissue. The high hydrophobicity of ceramides has been overcome by the development of HPTLC plate in chloroform:methanol/50:3.5, which increases the number and the intensity of low abundant Cer species. MS/MS analysis has been conducted directly on HPTLC plate allowing the molecular recognition; furthermore a dataset of spectra was acquired to create a database for future profiling of these molecules.
    Schlagwörter alkaline hydrolysis ; biomarkers ; blood serum ; brain ; ceramides ; data collection ; databases ; electrophoresis ; hydrophilicity ; hydrophobicity ; muscle tissues ; muscles ; oligosaccharides
    Sprache Englisch
    Erscheinungsverlauf 2016-07
    Umfang p. 2036-2049.
    Erscheinungsort John Wiley & Sons, Ltd
    Dokumenttyp Artikel
    Anmerkung JOURNAL ARTICLE
    ZDB-ID 619001-7
    ISSN 1522-2683 ; 0173-0835
    ISSN (online) 1522-2683
    ISSN 0173-0835
    DOI 10.1002/elps.201600094
    Datenquelle NAL Katalog (AGRICOLA)

    Zusatzmaterialien

    Kategorien

  10. Artikel ; Online: Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature

    Enrica Torretta / Micaela Garziano / Mariacristina Poliseno / Daniele Capitanio / Mara Biasin / Teresa Antonia Santantonio / Mario Clerici / Sergio Lo Caputo / Daria Trabattoni / Cecilia Gelfi

    International Journal of Molecular Sciences, Vol 22, Iss 10198, p

    2021  Band 10198

    Abstract: The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient’s outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients ... ...

    Abstract The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient’s outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.
    Schlagwörter COVID-19 ; COVID-19 severity ; sphingolipids ; acid sphingomyelinase ; serine palmitoyltransferase ; caspase 3 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Thema/Rubrik (Code) 610
    Sprache Englisch
    Erscheinungsdatum 2021-09-01T00:00:00Z
    Verlag MDPI AG
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang