LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Book ; Online: Table_2_In Silico Prediction of Molecular Targets of Astragaloside IV for Alleviation of COVID-19 Hyperinflammation by Systems Network Pharmacology and Bioinformatic Gene Expression Analysis.docx

    Chenliang Ge / Yan He

    2020  

    Abstract: Introduction The overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at ... ...

    Abstract Introduction The overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at undertaking a network pharmacology approach and bioinformatics analysis to uncover the pharmacological mechanisms of Astragaloside IV on COVID-19. Methods Potential targets of Astragaloside IV were screened from public databases. Differentially expressed genes (DEGs) in SARS-CoV-2 were screened using bioinformatics analysis on the Gene Expression Omnibus (GEO) datasets GSE147507. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. The overlapping genes, GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs were confirmed, and the location of overlapping targets in the key pathways was queried using KEGG Mapper. Results A total of 425 potential targets of Astragaloside IV were screened. Besides, a total of 546 DEGs were identified between SARS-CoV-2 infected samples and control samples, including 380 up-regulated and 166 down-regulated genes. There was a significant overlap in GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs. The shared genes included MMP13, NLRP3, TRIM21, GBP1, ADORA2A, PTAFR, TNF, MLNR, IL1B, NFKBIA, ADRB2, and IL6. Conclusions This study is the first to propose Astragaloside IV as a new drug candidate for alleviating hyper-inflammation in COVID-19 patients. Besides, the key targets and pathways may reveal the main pharmacological mechanism of Astragaloside IV in the treatment of COVID-19.
    Keywords Pharmacology ; Basic Pharmacology ; Clinical Pharmacology and Therapeutics ; Clinical Pharmacy and Pharmacy Practice ; Pharmaceutical Sciences ; Pharmacogenomics ; Toxicology (incl. Clinical Toxicology) ; Pharmacology and Pharmaceutical Sciences not elsewhere classified ; COVID-19 ; Astragaloside IV ; hyperinflammation ; network pharmacological ; cytokine storms ; covid19
    Subject code 570
    Publishing date 2020-09-16T04:50:06Z
    Publishing country uk
    Document type Book ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: In Silico Prediction of Molecular Targets of Astragaloside IV for Alleviation of COVID-19 Hyperinflammation by Systems Network Pharmacology and Bioinformatic Gene Expression Analysis

    Chenliang Ge / Yan He

    Frontiers in Pharmacology, Vol

    2020  Volume 11

    Abstract: IntroductionThe overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at ... ...

    Abstract IntroductionThe overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at undertaking a network pharmacology approach and bioinformatics analysis to uncover the pharmacological mechanisms of Astragaloside IV on COVID-19.MethodsPotential targets of Astragaloside IV were screened from public databases. Differentially expressed genes (DEGs) in SARS-CoV-2 were screened using bioinformatics analysis on the Gene Expression Omnibus (GEO) datasets GSE147507. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. The overlapping genes, GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs were confirmed, and the location of overlapping targets in the key pathways was queried using KEGG Mapper.ResultsA total of 425 potential targets of Astragaloside IV were screened. Besides, a total of 546 DEGs were identified between SARS-CoV-2 infected samples and control samples, including 380 up-regulated and 166 down-regulated genes. There was a significant overlap in GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs. The shared genes included MMP13, NLRP3, TRIM21, GBP1, ADORA2A, PTAFR, TNF, MLNR, IL1B, NFKBIA, ADRB2, and IL6.ConclusionsThis study is the first to propose Astragaloside IV as a new drug candidate for alleviating hyper-inflammation in COVID-19 patients. Besides, the key targets and pathways may reveal the main pharmacological mechanism of Astragaloside IV in the treatment of COVID-19.
    Keywords COVID-19 ; Astragaloside IV ; hyperinflammation ; network pharmacological ; cytokine storms ; Therapeutics. Pharmacology ; RM1-950 ; covid19
    Subject code 570
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Book ; Online: Table_1_In Silico Prediction of Molecular Targets of Astragaloside IV for Alleviation of COVID-19 Hyperinflammation by Systems Network Pharmacology and Bioinformatic Gene Expression Analysis.docx

    Chenliang Ge / Yan He

    2020  

    Abstract: Introduction The overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at ... ...

    Abstract Introduction The overproduction of cytokines and chemokines caused by excessive and uncontrolled inflammation contributes to the development of COVID-19. Astragaloside IV is considered as an anti-inflammatory and antioxidant agent. This study aimed at undertaking a network pharmacology approach and bioinformatics analysis to uncover the pharmacological mechanisms of Astragaloside IV on COVID-19. Methods Potential targets of Astragaloside IV were screened from public databases. Differentially expressed genes (DEGs) in SARS-CoV-2 were screened using bioinformatics analysis on the Gene Expression Omnibus (GEO) datasets GSE147507. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. The overlapping genes, GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs were confirmed, and the location of overlapping targets in the key pathways was queried using KEGG Mapper. Results A total of 425 potential targets of Astragaloside IV were screened. Besides, a total of 546 DEGs were identified between SARS-CoV-2 infected samples and control samples, including 380 up-regulated and 166 down-regulated genes. There was a significant overlap in GO terms and KEGG pathways between Astragaloside IV targets and SARS-CoV-2 DEGs. The shared genes included MMP13, NLRP3, TRIM21, GBP1, ADORA2A, PTAFR, TNF, MLNR, IL1B, NFKBIA, ADRB2, and IL6. Conclusions This study is the first to propose Astragaloside IV as a new drug candidate for alleviating hyper-inflammation in COVID-19 patients. Besides, the key targets and pathways may reveal the main pharmacological mechanism of Astragaloside IV in the treatment of COVID-19.
    Keywords Pharmacology ; Basic Pharmacology ; Clinical Pharmacology and Therapeutics ; Clinical Pharmacy and Pharmacy Practice ; Pharmaceutical Sciences ; Pharmacogenomics ; Toxicology (incl. Clinical Toxicology) ; Pharmacology and Pharmaceutical Sciences not elsewhere classified ; COVID-19 ; Astragaloside IV ; hyperinflammation ; network pharmacological ; cytokine storms ; covid19
    Subject code 570
    Publishing date 2020-09-16T04:50:06Z
    Publishing country uk
    Document type Book ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: A Novel Gene Signature to Predict Survival Time and Incident Ventricular Arrhythmias in Patients with Dilated Cardiomyopathy

    Chenliang Ge / Yan He

    Disease Markers, Vol

    2020  Volume 2020

    Abstract: The mortality in nonischaemic dilated cardiomyopathy (NIDCM) patients is still at a high level; sudden death in NIDCM can be caused by ventricular tachycardia. It is necessary to explore the pathogenesis of ventricular arrhythmias (VA) in NIDCM. ... ...

    Abstract The mortality in nonischaemic dilated cardiomyopathy (NIDCM) patients is still at a high level; sudden death in NIDCM can be caused by ventricular tachycardia. It is necessary to explore the pathogenesis of ventricular arrhythmias (VA) in NIDCM. Differentially expressed genes (DEGs) were identified by comparing the gene expression of NIDCM patients with or without VA in the gene expression profile of GSE135055. A total of 228 DEGs were obtained, and 3 genes were screened out to be significantly related to the survival time of NIDCM patients. We established a prediction model on two-gene (TOMM22, PPP2R5A) signature for the survival time of NIDCM patients. The area under the curve (AUC) was 0.75 calculated by the ROC curve analysis. These risk genes are probably new targets for exploring the pathogenesis of NIDCM with VA; the prediction model for survival time and incident ventricular arrhythmias is useful in clinical decision making for individual treatment.
    Keywords Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers.

    Chenliang Ge / Changguo Ma / Jiesheng Cui / Xingbo Dong / Luyang Sun / Yanjiao Li / An Yu

    PLoS ONE, Vol 18, Iss 3, p e

    2023  Volume 0281888

    Abstract: Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of ... ...

    Abstract Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of this drug. Lipid metabolism disorders such as fatty liver and hyperlipidemia are some of those unwanted side effects. Fatty liver is characterized as ectopic lipid accumulation in livers, which is usually accompanied by increased inflammation levels. Rapamycin is also a well-known anti-inflammation chemical. How rapamycin affects the inflammation level in rapamycin-induced fatty liver remains poorly understood. Here, we show that eight-day rapamycin treatment induced fatty liver and increased liver free fatty acid levels in mice, while the expression levels of inflammatory markers are even lower than those in the control mice. Mechanistically, the upstream of the pro-inflammatory pathway was activated in rapamycin-induced fatty livers, however, there is no increased NFκB nuclear translocation probably because the interaction between p65 and IκBα was enhanced by rapamycin treatment. The lipolysis pathway in the liver is also suppressed by rapamycin. Liver cirrhosis is an adverse consequence of fatty liver, while prolonged rapamycin treatment did not increase liver cirrhosis markers. Our results indicate that although fatty livers are induced by rapamycin, the fatty livers are not accompanied by increased inflammation levels, implying that rapamycin-induced fatty livers might not be as harmful as other types of fatty livers, such as high-fat diet and alcohol-induced fatty livers.
    Keywords Medicine ; R ; Science ; Q
    Subject code 571
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top