LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Development of the multi-directional ablation process using the femtosecond laser to create a pattern on the lateral side of a 3D microstructure

    Cheol Woo Ha / Yong Son

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 10

    Abstract: Abstract Two-photon stereolithography (TPS) is widely used for the fabrication of various three–dimensional (3D) structures with sub-micron fabrication resolution in a single fabrication process. However, TPS is unsuitable for microstructures with fine- ... ...

    Abstract Abstract Two-photon stereolithography (TPS) is widely used for the fabrication of various three–dimensional (3D) structures with sub-micron fabrication resolution in a single fabrication process. However, TPS is unsuitable for microstructures with fine-hole patterns. The laser ablation process can be easily drilled, or made holes in various materials. However, in the case of laser ablation, the focal plane of the laser is fixed, which is limited to the processing plane. In this study, a multidirectional ablation process is studied to apply laser ablation to various processing planes of a 3D microstructure fabricated by the TPS process. A 3D hybrid fabrication process with the advantages of both TPS and laser ablation is expected to improve the fabrication efficiency. The 3D hybrid process is proposed based on a single laser source. The microstructure is fabricated using TPS, and the multi-directional ablation process creates a hole in the lateral side of the 3D microstructure. To develop the multidirectional ablation process, the reflecting mirror system should be designed to adaptably rotate the laser focal plane and guide the laser path for the target process plane. Through various examples, we demonstrate the ability of the multi-directional ablation process with various examples.
    Keywords Medicine ; R ; Science ; Q
    Subject code 620
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Sequential process optimization for a digital light processing system to minimize trial and error

    Jae Won Choi / Gyeong-Ji Kim / Sukjoon Hong / Jeung Hee An / Baek-Jin Kim / Cheol Woo Ha

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 15

    Abstract: Abstract In additive manufacturing, logical and efficient workflow optimization enables successful production and reduces cost and time. These attempts are essential for preventing fabrication problems from various causes. However, quantitative analysis ... ...

    Abstract Abstract In additive manufacturing, logical and efficient workflow optimization enables successful production and reduces cost and time. These attempts are essential for preventing fabrication problems from various causes. However, quantitative analysis and integrated management studies of fabrication issues using a digital light processing (DLP) system are insufficient. Therefore, an efficient optimization method is required to apply several materials and extend the application of the DLP system. This study proposes a sequential process optimization (SPO) to manage the initial adhesion, recoating, and exposure energy. The photopolymerization characteristics and viscosity of the photocurable resin were quantitatively analyzed through process conditions such as build plate speed, layer thickness, and exposure time. The ability of the proposed SPO was confirmed by fabricating an evaluation model using a biocompatible resin. Furthermore, the biocompatibility of the developed resin was verified through experiments. The existing DLP process requires several trials and errors in process optimization. Therefore, the fabrication results are different depending on the operator’s know-how. The use of the proposed SPO enables a systematic approach for optimizing the process conditions of a DLP system. As a result, the DLP system is expected to be more utilized.
    Keywords Medicine ; R ; Science ; Q
    Subject code 660
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top