LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Synthesis and Bioactivity of Novel Sulfonate Scaffold-Containing Pyrazolecarbamide Derivatives as Antifungal and Antiviral Agents

    Zhi-Wei Lei / Jianmei Yao / Huifang Liu / Chiyu Ma / Wen Yang

    Frontiers in Chemistry, Vol

    2022  Volume 10

    Abstract: Novel pyrazolecarbamide derivatives bearing a sulfonate fragment were synthesized to identify potential antifungal and antiviral agents. All the structures of the key intermediates and target compounds were confirmed by nuclear magnetic resonance (NMR) ... ...

    Abstract Novel pyrazolecarbamide derivatives bearing a sulfonate fragment were synthesized to identify potential antifungal and antiviral agents. All the structures of the key intermediates and target compounds were confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The single-crystal X-ray diffraction of the compound T22 showed that pyrazole carbamide is a sulfonate. The in vitro antifungal activities of the target compounds against Colletotrichum camelliae, Pestalotiopsis theae, Gibberella zeae, and Rhizoctonia solani were evaluated at 50 μg/ml. Among the four pathogens, the target compounds exhibited the highest antifungal activity against Rhizoctonia solani. The compound T24 (EC50 = 0.45 mg/L) had higher antifungal activity than the commercial fungicide hymexazol (EC50 = 10.49 mg/L) against R. solani, almost similar to bixafen (EC50 = 0.25 mg/L). Additionally, the target compounds exhibited protective effects in vivo against TMV. Thus, this study reveals that pyrazolecarbamide derivatives bearing a sulfonate fragment exhibit potential antifungal and antiviral activities.
    Keywords pyrazolecarbamide ; sulfonate ; antifungal activity ; antiviral activity ; synthesis ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A Review on the Extraction, Bioactivity, and Application of Tea Polysaccharides

    Jianmei Yao / Huifang Liu / Chiyu Ma / Lulu Pu / Wen Yang / Zhiwei Lei

    Molecules, Vol 27, Iss 15, p

    2022  Volume 4679

    Abstract: Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex ... ...

    Abstract Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.
    Keywords Tea Polysaccharides ; extraction ; bioactivity ; antioxidant activity ; Organic chemistry ; QD241-441
    Language English
    Publishing date 2022-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Urinary microbiota and serum metabolite analysis in patients with diabetic kidney disease

    Yan Yang / Chiyu Ma / Shishi Li / Wanxia Cai / Weier Dai / Xinzhou Zhang / Lianghong Yin / Donge Tang / Fanna Liu / Yong Dai

    Heliyon, Vol 9, Iss 8, Pp e17040- (2023)

    2023  

    Abstract: Background: Diabetic kidney disease (DKD) is a common and potentially fatal consequence of diabetes. Chronic renal failure or end-stage renal disease may result over time. Numerous studies have demonstrated the function of the microbiota in health and ... ...

    Abstract Background: Diabetic kidney disease (DKD) is a common and potentially fatal consequence of diabetes. Chronic renal failure or end-stage renal disease may result over time. Numerous studies have demonstrated the function of the microbiota in health and disease. The use of advanced urine culture techniques revealed the presence of resident microbiota in the urinary tract, undermining the idea of urine sterility. Studies have demonstrated that the urine microbiota is related with urological illnesses; nevertheless, the fundamental mechanisms by which the urinary microbiota influences the incidence and progression of DKD remain unclear. The purpose of this research was to describe key characteristics of the patients with DKD urinary microbiota in order to facilitate the development of diagnostic and therapeutic for DKD. Methods: We evaluated the structure and composition of the microbiota extracted from urine samples taken from DKD patients (n = 19) and matched healthy controls (n = 15) using 16S rRNA gene sequencing. Meanwhile, serum metabolite profiles were compared using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Associations between clinical characteristics, urine microbiota, and serum metabolites were also examined. Finally, the interaction between urine microbiota and serum metabolites was clarified based on differential metabolite abundance analysis. Results: The findings indicated that the DKD had a distinct urinary microbiota from the healthy controls (HC). Taxonomic investigations indicated that the DKD microbiome had less alpha diversity than a control group. Proteobacteria and Acidobacteria phyla increased in the DKD, while Firmicutes and Bacteroidetes decreased significantly (P < 0.05). Acidobacteria was the most prevalent microbiota in the DKD, as determined by the Linear discriminant analysis Effect Size (LEfSe) plot. Changes in the urinary microbiota of DKD also had an effect on the makeup of metabolites. Short-chain fatty acids (SCFAs) and protein-bound uremic toxins (PBUTs) were ...
    Keywords Diabetic kidney disease ; Urinary microbiota ; Serum metabolite arginine ; Proline metabolism ; Science (General) ; Q1-390 ; Social sciences (General) ; H1-99
    Subject code 610
    Language English
    Publishing date 2023-08-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Serum metabolomics analysis reveals metabolite profile and key biomarkers of idiopathic membranous nephropathy

    Mingjun Ye / Donge Tang / Weilong Li / Chiyu Ma / Zhipeng Zeng / Shengyou Liao / Zhuoheng Song / Yu Meng / Fanna Liu / Shaodong Luan / Lianghong Yin / Yong Dai

    PeerJ, Vol 11, p e

    2023  Volume 15167

    Abstract: Background Idiopathic membranous nephropathy (IMN) is an organ-specific autoimmune disease with multiple and complex pathogenic mechanisms. Currently, renal biopsy is considered the gold standard for diagnosing membranous nephropathy. However, there were ...

    Abstract Background Idiopathic membranous nephropathy (IMN) is an organ-specific autoimmune disease with multiple and complex pathogenic mechanisms. Currently, renal biopsy is considered the gold standard for diagnosing membranous nephropathy. However, there were limitations to the renal puncture biopsy, such as the relatively high cost, longer time consuming, and the risk of invasive procedures. We investigated the profile of serum metabolites in IMN patients based on the UHPLC-QE-MS metabolomics technique for exploring the potential disease biomarkers and clinical implementation. Methods In our research, we collected serum samples from healthy control (n = 15) and IMN patients (n = 25) to perform metabolomics analysis based on the UHPLC-QE-MS technique. Result We identified 215 differentially expressed metabolites (DEMs) between the IMN and healthy control (HC) groups. Furthermore, these DEMs were significantly identified in histidine metabolism, arginine and proline metabolism, pyrimidine metabolism, purine metabolism, and steroid hormone biosynthesis. Several key DEMs were significantly correlated with the level of clinical parameters, such as serum albumin, IgG, UTP, and cholesterol. Among them, dehydroepiandrosterone sulfate (DHEAS) was considered the reliable diagnostic biomarker in the IMN group. There was an increased abundance of actinobacteria, phylum proteobacteria, and class gammaproteobacterial in IMN patients for host-microbiome origin analysis. Conclusion Our study revealed the profiles of DEMs from the IMN and HC groups. The result demonstrated that there were disorders of amino acids, nucleotides, and steroids hormones metabolism in IMN patients. The down-regulation of DHEAS may be associated with the imbalance of the immune environment in IMN patients. In host-microbiome origin analysis, the gut microbiota and metabolite disturbances were present in IMN patients.
    Keywords Idiopathic membranous nephropathy ; Biomarker analysis ; Metabolomics ; Dehydroepiandrosterone sulfate ; Gut microbes ; Medicine ; R ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2023-04-01T00:00:00Z
    Publisher PeerJ Inc.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Multi-Platform-Based Analysis Characterizes Molecular Alterations of the Nucleus in Human Colorectal Cancer

    Wei Zhang / Minmin Wu / Xucan Gao / Chiyu Ma / Huixuan Xu / Liewen Lin / Jingquan He / Wanxia Cai / Yafang Zhong / Donge Tang / Min Tang / Yong Dai

    Frontiers in Cell and Developmental Biology, Vol

    2022  Volume 10

    Abstract: Background: The disturbed molecular alterations of nucleus may promote the development of colorectal cancer (CRC). A multi-platform-based analysis of nucleus of CRC patients helps us to better understand the underlying mechanism of CRC and screen out the ...

    Abstract Background: The disturbed molecular alterations of nucleus may promote the development of colorectal cancer (CRC). A multi-platform-based analysis of nucleus of CRC patients helps us to better understand the underlying mechanism of CRC and screen out the potential drug targets for clinical treatment. However, such studies on nucleus in human CRC are still lacking.Methods: We collected the cancerous and para-cancerous tissues from eight CRC patients and performed a multiplex analysis of the molecular changes of the nucleus, including structural variations (SVs), DNA methylation, chromatin accessibility, proteome and phosphorproteome.Results: In our study, we revealed a significant molecular change of nucleus of CRC patients using our original proteomic and phosphorylomic datasets. Subsequently, we characterized the molecular alterations of nucleus of CRC patients at multiple dimensionalities, including DNA, mRNA, protein and epigenetic modification. Next, we found that the great molecular changes of nucleus might affect the biological processes named endocytosis and ubiquitin-mediated proteolysis. Besides, we identified DYNC1LI2 and TPR as the potentially hub proteins within the network of nuclear genes in CRC cells. Furthermore, we identified 1905 CRC-specific SVs, and proclaimed 17 CRC-specific SVs were probably associated with the disturbance of immune microenvironment of CRC patients. We also revealed that the SVs of CXCL5, CXCL10 and CXCL11 might be the core SVs among all the immune-relevant SVs. Finally, we identified seven genes as the upstream transcriptional factors potentially regulating the expression of nuclear genes, such as YY1 and JUN, using a multi-omics approach.Conclusion: Here, we characterized the molecular changes of nucleus of CRC patients, disclosed the potentially core nuclear genes within the network, and identified the probable upstream regulator of nucleus. The findings of this study are helpful to understand the pathogenic molecular changes of nucleus in CRC patients and provide a ...
    Keywords nucleus ; colorectal cancer ; structural variations ; immune microenvironment ; multiomics ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top