LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Identification of quantitative trait loci and candidate genes associated with ABA sensitivity in common wild rice (Oryza rufipogon Griff.)

    Wen-yang CAI / Lu-bin TAN / Feng-xia LIU / Chuan-qing SUN

    Journal of Integrative Agriculture, Vol 16, Iss 11, Pp 2375-

    2017  Volume 2385

    Abstract: Abscisic acid (ABA), as one of the foremost signaling molecules in plants, is an important hormone which plays versatile functions in regulating developmental process and adaptive stress process. A set of introgression lines were previously generated via ...

    Abstract Abscisic acid (ABA), as one of the foremost signaling molecules in plants, is an important hormone which plays versatile functions in regulating developmental process and adaptive stress process. A set of introgression lines were previously generated via a backcrossing program using an elite indica cultivar rice Teqing (O. sativa L.) as recipient and an accession of Yuanjiang common wild rice (O. rufipogon Griff.) as donor. In this study, the previously developed introgression lines were evaluated for ABA sensitivity. Here we reported that a total of 14 quantitative trait loci (QTLs) associated with ABA sensitivity were identified. An ABA sensitive introgression line, YIL53, was identified and characterized. Physiological characterization, including chlorophyll content, malondialdehyde content, soluble sugar content, and stomata movement, demonstrated that YIL53 exhibited the characteristics associated with ABA sensitivity. Genotypic analysis revealed that YIL53 harbored one QTL related to ABA sensitivity, qASS1-2, which was located on chromosome 1 within one introgressed segment derived from the Yuanjiang common wild rice. Furthermore, the qASS1-2 was finally narrowed down to a 441-kb region between simple sequence repeats (SSR) marker RM212 and single nucleotide polymorphism (SNP) marker M3 using the segregation population derived from the cross between Teqing and YIL53, and three candidate genes associated with ABA sensitivity were identified using a strategy combined gene expression analysis with QTL mapping. Identification of the QTLs related to ABA sensitivity and characterization of the ABA sensitive line YIL53 would provide a helpful basis for isolating novel genes related to ABA sensitivity.
    Keywords wild rice ; introgression lines ; ABA sensitivity ; quantitative trait locus ; candidate gene ; Agriculture (General) ; S1-972
    Subject code 572
    Language English
    Publishing date 2017-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article: Identification of quantitative trait loci and candidate genes associated with ABA sensitivity in common wild rice (Oryza rufipogon Griff.)

    CAI, Wen-yang / Chuan-qing SUN / Feng-xia LIU / Lu-bin TAN

    CAAS. Publishing services by Elsevier B.V Journal of integrative agriculture. 2017 Nov., v. 16, no. 11

    2017  

    Abstract: Abscisic acid (ABA), as one of the foremost signaling molecules in plants, is an important hormone which plays versatile functions in regulating developmental process and adaptive stress process. A set of introgression lines were previously generated via ...

    Abstract Abscisic acid (ABA), as one of the foremost signaling molecules in plants, is an important hormone which plays versatile functions in regulating developmental process and adaptive stress process. A set of introgression lines were previously generated via a backcrossing program using an elite indica cultivar rice Teqing (O. sativa L.) as recipient and an accession of Yuanjiang common wild rice (O. rufipogon Griff.) as donor. In this study, the previously developed introgression lines were evaluated for ABA sensitivity. Here we reported that a total of 14 quantitative trait loci (QTLs) associated with ABA sensitivity were identified. An ABA sensitive introgression line, YIL53, was identified and characterized. Physiological characterization, including chlorophyll content, malondialdehyde content, soluble sugar content, and stomata movement, demonstrated that YIL53 exhibited the characteristics associated with ABA sensitivity. Genotypic analysis revealed that YIL53 harbored one QTL related to ABA sensitivity, qASS1-2, which was located on chromosome 1 within one introgressed segment derived from the Yuanjiang common wild rice. Furthermore, the qASS1-2 was finally narrowed down to a 441-kb region between simple sequence repeats (SSR) marker RM212 and single nucleotide polymorphism (SNP) marker M3 using the segregation population derived from the cross between Teqing and YIL53, and three candidate genes associated with ABA sensitivity were identified using a strategy combined gene expression analysis with QTL mapping. Identification of the QTLs related to ABA sensitivity and characterization of the ABA sensitive line YIL53 would provide a helpful basis for isolating novel genes related to ABA sensitivity.
    Keywords abscisic acid ; backcrossing ; chlorophyll ; chromosomes ; cultivars ; gene expression ; genes ; introgression ; malondialdehyde ; microsatellite repeats ; Oryza rufipogon ; quantitative trait loci ; single nucleotide polymorphism ; stomatal movement ; sugar content ; wild rice
    Language English
    Dates of publication 2017-11
    Size p. 2375-2385.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 2660426-7
    ISSN 2095-3119
    ISSN 2095-3119
    DOI 10.1016/S2095-3119(17)61683-6
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  3. Article ; Online: Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)

    Jie ZHAO / Jing-jing QIN / Qian SONG / Chuan-qing SUN / Feng-xia LIU

    Journal of Integrative Agriculture, Vol 15, Iss 9, Pp 1933-

    2016  Volume 1943

    Abstract: Rice (Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple ...

    Abstract Rice (Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple genetic factors in rice, and the complex genetic mechanisms associated with chilling stress tolerance remain unclear. Here, we detected seven quantitative trait loci (QTLs) for cold tolerance at booting stage and identified one cold tolerant line, SIL157, in an introgression line population derived from a cross between the indica variety Guichao 2, as the recipient, and Dongxiang common wild rice, as the donor. When compared with Guichao 2, SIL157 showed a stronger cold tolerance during different growth stages. Through an integrated strategy that combined QTL-mapping with expression profile analysis, six candidate genes, which were up-regulated under chilling stress at the seedling and booting developmental stages, were studied. The results may help in understanding cold tolerance mechanisms and in using beneficial alleles from wild rice to improve the cold tolerance of rice cultivars through molecular marker-assisted selection.
    Keywords common wild rice ; introgression line ; low temperature tolerance ; different growth stages ; candidate genes ; Agriculture (General) ; S1-972
    Subject code 580
    Language English
    Publishing date 2016-09-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article: Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)

    ZHAO, Jie / Chuan-qing SUN / Feng-xia LIU / Jing-jing QIN / Qian SONG

    Chinese Academy of Agricultural Sciences Journal of integrative agriculture. 2016 Sept., v. 15, no. 9

    2016  

    Abstract: Rice (Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple ...

    Abstract Rice (Oryza sativa L.), a tropical and subtropical crop, is susceptible to low temperature stress during seedling, booting, and flowering stages, which leads to lower grain quality levels and decreasing rice yields. Cold tolerance is affected by multiple genetic factors in rice, and the complex genetic mechanisms associated with chilling stress tolerance remain unclear. Here, we detected seven quantitative trait loci (QTLs) for cold tolerance at booting stage and identified one cold tolerant line, SIL157, in an introgression line population derived from a cross between the indica variety Guichao 2, as the recipient, and Dongxiang common wild rice, as the donor. When compared with Guichao 2, SIL157 showed a stronger cold tolerance during different growth stages. Through an integrated strategy that combined QTL-mapping with expression profile analysis, six candidate genes, which were up-regulated under chilling stress at the seedling and booting developmental stages, were studied. The results may help in understanding cold tolerance mechanisms and in using beneficial alleles from wild rice to improve the cold tolerance of rice cultivars through molecular marker-assisted selection.
    Keywords alleles ; cold stress ; cold tolerance ; cultivars ; flowering ; gene expression regulation ; grain quality ; grain yield ; introgression ; marker-assisted selection ; Oryza rufipogon ; Oryza sativa ; quantitative trait loci ; seedlings ; stress tolerance ; wild rice
    Language English
    Dates of publication 2016-09
    Size p. 1933-1943.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 2660426-7
    ISSN 2095-3119
    ISSN 2095-3119
    DOI 10.1016/S2095-3119(15)61214-X
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  5. Article: Genetic identification of Quantitative Trait Loci for contents of mineral nutrients in rice grain

    A. L. Garcia-Oliveira, L. Tan, YongCai Fu / ChuanQing Sun

    Abstract: In this study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. ...

    Abstract In this study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. Substantial variation was observed for all traits and most of the mineral elements were significantly positive correlated or independent except for Fe with Cu. A total of 31 putative quantitative trait loci (QTLs) were detected for these eight mineral elements by single point analysis. Wild rice (O. rufipogon) contributed favorable alleles for most of the QTLs (26 QTLs), and chromosomes 1, 9 and 12 exhibited 14 QTLs (45%) for these traits. One major effect of QTL for zinc content accounted for the largest proportion of phenotypic variation (11%–19%) was detected near the simple sequence repeats marker RM152 on chromosome 8. The co-locations of QTLs for some mineral elements observed in this mapping population suggested the relationship was at a molecular level among these traits and could be helpful for simultaneous improvement of these traits in rice grain by marker assisted selection.
    Document type Article
    Database AGRIS - International Information System for the Agricultural Sciences and Technology

    More links

    Kategorien

To top