LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 24

Search options

  1. Article ; Online: Reply To

    Albert C. Yang / Chung-Kang Peng / Norden E. Huang

    Nature Communications, Vol 13, Iss 1, Pp 1-

    Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition

    2022  Volume 3

    Keywords Science ; Q
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Slow wave synchronization and sleep state transitions

    Dan Guo / Robert J. Thomas / Yanhui Liu / Steven A. Shea / Jun Lu / Chung-Kang Peng

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 11

    Abstract: Abstract Spontaneous synchronization over large networks is ubiquitous in nature, ranging from inanimate to biological systems. In the human brain, neuronal synchronization and de-synchronization occur during sleep, with the greatest degree of neuronal ... ...

    Abstract Abstract Spontaneous synchronization over large networks is ubiquitous in nature, ranging from inanimate to biological systems. In the human brain, neuronal synchronization and de-synchronization occur during sleep, with the greatest degree of neuronal synchronization during slow wave sleep (SWS). The current sleep classification schema is based on electroencephalography and provides common criteria for clinicians and researchers to describe stages of non-rapid eye movement (NREM) sleep as well as rapid eye movement (REM) sleep. These sleep stage classifications have been based on convenient heuristic criteria, with little consideration of the accompanying normal physiological changes across those same sleep stages. To begin to resolve those inconsistencies, first focusing only on NREM sleep, we propose a simple cluster synchronization model to explain the emergence of SWS in healthy people without sleep disorders. We apply the empirical mode decomposition (EMD) analysis to quantify slow wave activity in electroencephalograms, and provide quantitative evidence to support our model. Based on this synchronization model, NREM sleep can be classified as SWS and non-SWS, such that NREM sleep can be considered as an intrinsically bistable process. Finally, we develop an automated algorithm for SWS classification. We show that this new approach can unify brain wave dynamics and their corresponding physiologic changes.
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Causal decomposition in the mutual causation system

    Albert C. Yang / Chung-Kang Peng / Norden E. Huang

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 10

    Abstract: Causality inference in time series analysis based on temporal precedence principle between cause and effect fails to detect mutual causal interactions. Here, Yang et al. introduce a causal decomposition approach based on the covariation principle of ... ...

    Abstract Causality inference in time series analysis based on temporal precedence principle between cause and effect fails to detect mutual causal interactions. Here, Yang et al. introduce a causal decomposition approach based on the covariation principle of cause and effect that overcomes this limitation.
    Keywords Science ; Q
    Language English
    Publishing date 2018-08-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Causal decomposition in the mutual causation system

    Albert C. Yang / Chung-Kang Peng / Norden E. Huang

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 10

    Abstract: Causality inference in time series analysis based on temporal precedence principle between cause and effect fails to detect mutual causal interactions. Here, Yang et al. introduce a causal decomposition approach based on the covariation principle of ... ...

    Abstract Causality inference in time series analysis based on temporal precedence principle between cause and effect fails to detect mutual causal interactions. Here, Yang et al. introduce a causal decomposition approach based on the covariation principle of cause and effect that overcomes this limitation.
    Keywords Science ; Q
    Language English
    Publishing date 2018-08-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: On the Variability of Heart Rate Variability—Evidence from Prospective Study of Healthy Young College Students

    Xingran Cui / Leirong Tian / Zhengwen Li / Zikai Ren / Keyang Zha / Xinruo Wei / Chung-Kang Peng

    Entropy, Vol 22, Iss 1302, p

    2020  Volume 1302

    Abstract: Heart rate variability (HRV) has been widely used as indices for autonomic regulation, including linear analyses, entropy and multi-scale entropy based nonlinear analyses, and however, it is strongly influenced by the conditions under which the signal is ...

    Abstract Heart rate variability (HRV) has been widely used as indices for autonomic regulation, including linear analyses, entropy and multi-scale entropy based nonlinear analyses, and however, it is strongly influenced by the conditions under which the signal is being recorded. To investigate the variability of healthy HRV under different settings, we recorded electrocardiograph (ECG) signals from 56 healthy young college students (20 h for each participant) at campus using wearable single-lead ECG device. Accurate R peak to R peak (RR) intervals were extracted by combing the advantages of five commonly used R-peak detection algorithms to eliminate data quality influence. Thorough and detailed linear and nonlinear HRV analyses were performed. Variability of HRV metrics were evaluated from five categories: (1) different states of daily activities; (2) different recording time period in the same day during free-running daily activities; (3) body postures of sitting and lying; (4) lying on the left, right and back; and (5) gender influence. For most of the analyzed HRV metrics, significant differences ( p < 0.05) were found among different recording conditions within the five categories except lying on different positions. Results suggested that the standardization of ECG data collection and HRV analysis should be implemented in HRV related studies, especially for entropy and multi-scale entropy based analyses. Furthermore, this preliminary study provides reference values of HRV indices under various recording conditions of healthy young subjects that could be useful information for different applications (e.g., health monitoring and management).
    Keywords heart rate variability ; entropy ; healthy young college students ; ECG recording conditions ; standardization ; Science ; Q ; Astrophysics ; QB460-466 ; Physics ; QC1-999
    Subject code 796
    Language English
    Publishing date 2020-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Complexity of Wake Electroencephalography Correlates With Slow Wave Activity After Sleep Onset

    Fengzhen Hou / Zhinan Yu / Chung-Kang Peng / Albert Yang / Chunyong Wu / Yan Ma

    Frontiers in Neuroscience, Vol

    2018  Volume 12

    Abstract: Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically, whose chaotic, dynamic, complex, and dissipative nature implies that non-linear approaches could uncover some mechanism of sleep. Based on well-established ... ...

    Abstract Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically, whose chaotic, dynamic, complex, and dissipative nature implies that non-linear approaches could uncover some mechanism of sleep. Based on well-established complexity theories, one hypothesis in sleep medicine is that lower complexity of brain waves at pre-sleep state can facilitate sleep initiation and further improve sleep quality. However, this has never been studied with solid data. In this study, EEG collected from healthy subjects was used to investigate the association between pre-sleep EEG complexity and sleep quality. Multiscale entropy analysis (MSE) was applied to pre-sleep EEG signals recorded immediately after light-off (while subjects were awake) for measuring the complexities of brain dynamics by a proposed index, CI1−30. Slow wave activity (SWA) in sleep, which is commonly used as an indicator of sleep depth or sleep intensity, was quantified based on two methods, traditional Fast Fourier transform (FFT) and ensemble empirical mode decomposition (EEMD). The associations between wake EEG complexity, sleep latency, and SWA in sleep were evaluated. Our results demonstrated that lower complexity before sleep onset is associated with decreased sleep latency, indicating a potential facilitating role of reduced pre-sleep complexity in the wake-sleep transition. In addition, the proposed EEMD-based method revealed an association between wake complexity and quantified SWA in the beginning of sleep (90 min after sleep onset). Complexity metric could thus be considered as a potential indicator for sleep interventions, and further studies are encouraged to examine the application of EEG complexity before sleep onset in populations with difficulty in sleep initiation. Further studies may also examine the mechanisms of the causal relationships between pre-sleep brain complexity and SWA, or conduct comparisons between normal and pathological conditions.
    Keywords EEG ; brain activity ; non-linear ; sleep medicine ; sleeps stages ; complexity ; Neurosciences. Biological psychiatry. Neuropsychiatry ; RC321-571
    Subject code 005
    Language English
    Publishing date 2018-11-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Heart rhythm complexity analysis in patients with inferior ST-elevation myocardial infarction

    Shu-Yu Tang / Hsi-Pin Ma / Chen Lin / Men-Tzung Lo / Lian-Yu Lin / Tsung-Yan Chen / Cho-Kai Wu / Jiun-Yang Chiang / Jen-Kuang Lee / Chi-Sheng Hung / Li-Yu Daisy Liu / Yu-Wei Chiu / Cheng-Hsuan Tsai / Yen-Tin Lin / Chung-Kang Peng / Yen-Hung Lin

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 11

    Abstract: Abstract Heart rhythm complexity (HRC), a subtype of heart rate variability (HRV), is an important tool to investigate cardiovascular disease. In this study, we aimed to analyze serial changes in HRV and HRC metrics in patients with inferior ST-elevation ...

    Abstract Abstract Heart rhythm complexity (HRC), a subtype of heart rate variability (HRV), is an important tool to investigate cardiovascular disease. In this study, we aimed to analyze serial changes in HRV and HRC metrics in patients with inferior ST-elevation myocardial infarction (STEMI) within 1 year postinfarct and explore the association between HRC and postinfarct left ventricular (LV) systolic impairment. We prospectively enrolled 33 inferior STEMI patients and 74 control subjects and analyzed traditional linear HRV and HRC metrics in both groups, including detrended fluctuation analysis (DFA) and multiscale entropy (MSE). We also analyzed follow-up postinfarct echocardiography for 1 year. The STEMI group had significantly lower standard deviation of RR interval (SDNN), and DFAα2 within 7 days postinfarct (acute stage) comparing to control subjects. LF power was consistently higher in STEMI group during follow up. The MSE scale 5 was higher at acute stage comparing to control subjects and had a trend of decrease during 1-year postinfarct. The MSE area under scale 1–5 showed persistently lower than control subjects and progressively decreased during 1-year postinfarct. To predict long-term postinfarct LV systolic impairment, the slope between MSE scale 1 to 5 (slope 1–5) had the best predictive value. MSE slope 1–5 also increased the predictive ability of the linear HRV metrics in both the net reclassification index and integrated discrimination index models. In conclusion, HRC and LV contractility decreased 1 year postinfarct in inferior STEMI patients, and MSE slope 1–5 was a good predictor of postinfarct LV systolic impairment.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2023-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Tai Chi training's effect on lower extremity muscle co-contraction during single- and dual-task gait

    Peter M Wayne / Brian J Gow / Fengzhen Hou / Yan Ma / Jeffrey M Hausdorff / Justine Lo / Pamela M Rist / Chung-Kang Peng / Lewis A Lipsitz / Vera Novak / Brad Manor

    PLoS ONE, Vol 16, Iss 1, p e

    Cross-sectional and randomized trial studies.

    2021  Volume 0242963

    Abstract: Background Tai Chi (TC) mind-body exercise has been shown to reduce falls and improve balance and gait, however, few studies have evaluated the role of lower extremity muscle activation patterns in the observed benefits of TC on mobility. Purpose To ... ...

    Abstract Background Tai Chi (TC) mind-body exercise has been shown to reduce falls and improve balance and gait, however, few studies have evaluated the role of lower extremity muscle activation patterns in the observed benefits of TC on mobility. Purpose To perform an exploratory analysis of the association between TC training and levels of lower extremity muscle co-contraction in healthy adults during walking under single-task (ST) and cognitive dual-task (DT) conditions. Methods Surface electromyography of the anterior tibialis and lateral gastrocnemius muscles was recorded during 90 sec trials of overground ST (walking normally) and DT (walking with verbalized serial subtractions) walking. A mean co-contraction index (CCI), across all strides, was calculated based on the percentage of total muscle activity when antagonist muscles were simultaneously activated. A hybrid study design investigated long-term effects of TC via a cross-sectional comparison of 27 TC experts and 60 age-matched TC-naïve older adults. A longitudinal comparison assessed the shorter-term effects of TC; TC-naïve participants were randomly allocated to either 6 months of TC training or to usual care. Results Across all participants at baseline, greater CCI was correlated with slower gait speed under DT (β(95% CI) = -26.1(-48.6, -3.7)) but not ST (β(95% CI) = -15.4(-38.2, 7.4)) walking. Linear models adjusting for age, gender, BMI and other factors that differed at baseline indicated that TC experts exhibited lower CCI compared to TC naives under DT, but not ST conditions (ST: mean difference (95% CI) = -7.1(-15.2, 0.97); DT: mean difference (95% CI) = -10.1(-18.1, -2.4)). No differences were observed in CCI for TC-naive adults randomly assigned to 6 months of TC vs. usual care. Conclusion Lower extremity muscle co-contraction may play a role in the observed benefit of longer-term TC training on gait and postural control. Longer-duration and adequately powered randomized trials are needed to evaluate the effect of TC on neuromuscular coordination ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 796
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Usefulness of heart rhythm complexity in heart failure detection and diagnosis

    Cheng-Hsuan Tsai / Hsi-Pin Ma / Yen-Tin Lin / Chi-Sheng Hung / Shan-Hsuan Huang / Bei-Lin Chuang / Chen Lin / Men-Tzung Lo / Chung-Kang Peng / Yen-Hung Lin

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 8

    Abstract: Abstract Heart failure (HF) is a major cardiovascular disease worldwide, and the early detection and diagnosis remain challenges. Recently, heart rhythm complexity analysis, derived from non-linear heart rate variability (HRV) analysis, has been proposed ...

    Abstract Abstract Heart failure (HF) is a major cardiovascular disease worldwide, and the early detection and diagnosis remain challenges. Recently, heart rhythm complexity analysis, derived from non-linear heart rate variability (HRV) analysis, has been proposed as a non-invasive method to detect diseases and predict outcomes. In this study, we aimed to investigate the diagnostic value of heart rhythm complexity in HF patients. We prospectively analyzed 55 patients with symptomatic HF with impaired left ventricular ejection fraction and 97 participants without HF symptoms and normal LVEF as controls. Traditional linear HRV parameters and heart rhythm complexity including detrended fluctuation analysis (DFA) and multiscale entropy (MSE) were analyzed. The traditional linear HRV, MSE parameters and DFAα1 were significantly lower in HF patients compared with controls. In regression analysis, DFAα1 and MSE scale 5 remained significant predictors after adjusting for multiple clinical variables. Among all HRV parameters, MSE scale 5 had the greatest power to differentiate the HF patients from the controls in receiver operating characteristic curve analysis (area under the curve: 0.844). In conclusion, heart rhythm complexity appears to be a promising tool for the detection and diagnosis of HF.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: The Value of Heart Rhythm Complexity in Identifying High-Risk Pulmonary Hypertension Patients

    Shu-Yu Tang / Hsi-Pin Ma / Chi-Sheng Hung / Ping-Hung Kuo / Chen Lin / Men-Tzung Lo / Hsao-Hsun Hsu / Yu-Wei Chiu / Cho-Kai Wu / Cheng-Hsuan Tsai / Yen-Tin Lin / Chung-Kang Peng / Yen-Hung Lin

    Entropy, Vol 23, Iss 753, p

    2021  Volume 753

    Abstract: Pulmonary hypertension (PH) is a fatal disease—even with state-of-the-art medical treatment. Non-invasive clinical tools for risk stratification are still lacking. The aim of this study was to investigate the clinical utility of heart rhythm complexity ... ...

    Abstract Pulmonary hypertension (PH) is a fatal disease—even with state-of-the-art medical treatment. Non-invasive clinical tools for risk stratification are still lacking. The aim of this study was to investigate the clinical utility of heart rhythm complexity in risk stratification for PH patients. We prospectively enrolled 54 PH patients, including 20 high-risk patients (group A; defined as WHO functional class IV or class III with severely compromised hemodynamics), and 34 low-risk patients (group B). Both linear and non-linear heart rate variability (HRV) variables, including detrended fluctuation analysis (DFA) and multiscale entropy (MSE), were analyzed. In linear and non-linear HRV analysis, low frequency and high frequency ratio, DFAα1, MSE slope 5, scale 5, and area 6–20 were significantly lower in group A. Among all HRV variables, MSE scale 5 (AUC: 0.758) had the best predictive power to discriminate the two groups. In multivariable analysis, MSE scale 5 ( p = 0.010) was the only significantly predictor of severe PH in all HRV variables. In conclusion, the patients with severe PH had worse heart rhythm complexity. MSE parameters, especially scale 5, can help to identify high-risk PH patients.
    Keywords pulmonary hypertension ; heart rate variability ; non-linear analysis ; detrended fluctuation analysis ; multiscale entropy ; Science ; Q ; Astrophysics ; QB460-466 ; Physics ; QC1-999
    Subject code 610
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top