LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 28

Search options

  1. Article ; Online: Pan-Cancer Classification of Gene Expression Data Based on Artificial Neural Network Model

    Claudia Cava / Christian Salvatore / Isabella Castiglioni

    Applied Sciences, Vol 13, Iss 7355, p

    2023  Volume 7355

    Abstract: Although precision classification is a vital issue for therapy, cancer diagnosis has been shown to have serious constraints. In this paper, we proposed a deep learning model based on gene expression data to perform a pan-cancer classification on 16 ... ...

    Abstract Although precision classification is a vital issue for therapy, cancer diagnosis has been shown to have serious constraints. In this paper, we proposed a deep learning model based on gene expression data to perform a pan-cancer classification on 16 cancer types. We used principal component analysis (PCA) to decrease data dimensionality before building a neural network model for pan-cancer prediction. The performance of accuracy was monitored and optimized using the Adam algorithm. We compared the results of the model with a random forest classifier and XGBoost. The results show that the neural network model and random forest achieve high and similar classification performance (neural network mean accuracy: 0.84; random forest mean accuracy: 0.86; XGBoost mean accuracy: 0.90). Thus, we suggest future studies of neural network, random forest and XGBoost models for the detection of cancer in order to identify early treatment approaches to enhance cancer survival.
    Keywords pan-cancer ; gene expression ; neural network ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 006
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Integration of Molecular Docking and In Vitro Studies

    Claudia Cava / Isabella Castiglioni

    Applied Sciences, Vol 10, Iss 6981, p

    A Powerful Approach for Drug Discovery in Breast Cancer

    2020  Volume 6981

    Abstract: Molecular docking in the pharmaceutical industry is a powerful in silico approach for discovering novel therapies for unmet medical needs predicting drug–target interactions. It not only provides binding affinity between drugs and targets at the atomic ... ...

    Abstract Molecular docking in the pharmaceutical industry is a powerful in silico approach for discovering novel therapies for unmet medical needs predicting drug–target interactions. It not only provides binding affinity between drugs and targets at the atomic level, but also elucidates the fundamental pharmacological properties of specific drugs. The purpose of this review was to illustrate newer and emergent uses of docking when combined with in vitro techniques for drug discovery in metastatic breast cancer. We grouped the selected articles into five main categories; namely, systematic repositioning of drugs, natural drugs, new synthesized molecules, combinations of drugs, and drug latentiation. We focused on new promising drugs that have a good affinity with their targets, thus inducing a favorable biological response. This review suggests that the integration of molecular docking and in vitro studies can accelerate cancer drug discovery showing a good consistency of the results between the two approaches.
    Keywords molecular docking ; in vitro ; metastatic breast cancer ; drug discovery ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 004
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Consequences of exposure to pollutants on respiratory health

    Salvatore D'Antona / Isabella Castiglioni / Danilo Porro / Claudia Cava

    PLoS ONE, Vol 17, Iss 11, p e

    From genetic correlations to causal relationships.

    2022  Volume 0277235

    Abstract: Modern society grew rapidly over the last few decades and this led to an alarming increase in air pollutants and a worsening of the human health, especially in relation to the respiratory system. Indeed, chronic respiratory diseases were the third main ... ...

    Abstract Modern society grew rapidly over the last few decades and this led to an alarming increase in air pollutants and a worsening of the human health, especially in relation to the respiratory system. Indeed, chronic respiratory diseases were the third main cause of death in 2017, with over 3 million of deaths. Furthermore, the pollution has considerable consequences both for burden medical expenses and environmental. However, the mechanisms linking pollutants to the onset of these diseases remain unclear. Thus, in this study we addressed this problem through the United Kingdom BioBank database, analyzing 170 genome-wide association studies (103 related to respiratory diseases and 67 related to pollutants). We analyzed the genetic correlations and causal relationships of these traits, leveraging the summary statistics and bioinformatics packages such as Linkage Disequilibrium Score Regression and Latent Causal Variable. We obtained 158 significant genetic correlations and subsequently we analyzed them through the Latent Causal Variable analysis, obtaining 20 significant causal relationships. The most significant were between "Workplace full of chemicals or other fumes: Sometimes" and "Condition that has ever been diagnosed by a doctor: Asthma" and between "Workplace very dusty: Sometimes" and "Condition that has ever been diagnosed by a doctor: Emphysema or chronic bronchitis". Finally, we identified single nucleotide polymorphisms independently associated with sveral pollutants to analyze the genes and pathways that could be involved in the onset of the aforementioned respiratory system disorders and that could be useful clinical target. This study highlighted how crucial are the air condition of the working environments and the type of transport used in the onset of respiratory-related morbidity. Based on that, we also suggested some interventions, in order to improve quality life and develop new and eco-friendly society and life style, such as improving indoor air circulation, the use of public transport and urban ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 333
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Identification of Breast Cancer Subtype-Specific Biomarkers by Integrating Copy Number Alterations and Gene Expression Profiles

    Claudia Cava / Mirko Pisati / Marco Frasca / Isabella Castiglioni

    Medicina, Vol 57, Iss 261, p

    2021  Volume 261

    Abstract: Background and Objectives : Breast cancer is a heterogeneous disease categorized into four subtypes. Previous studies have shown that copy number alterations of several genes are implicated with the development and progression of many cancers. This study ...

    Abstract Background and Objectives : Breast cancer is a heterogeneous disease categorized into four subtypes. Previous studies have shown that copy number alterations of several genes are implicated with the development and progression of many cancers. This study evaluates the effects of DNA copy number alterations on gene expression levels in different breast cancer subtypes. Materials and Methods : We performed a computational analysis integrating copy number alterations and gene expression profiles in 1024 breast cancer samples grouped into four molecular subtypes: luminal A, luminal B, HER2, and basal. Results : Our analyses identified several genes correlated in all subtypes such as KIAA1967 and MCPH1 . In addition, several subtype-specific genes that showed a significant correlation between copy number and gene expression profiles were detected: SMARCB1 , AZIN1 , MTDH in luminal A, PPP2R5E , APEX1 , GCN5 in luminal B, TNFAIP1 , PCYT2 , DIABLO in HER2, and FAM175B , SENP5 , SCAF1 in basal subtype. Conclusions : This study showed that computational analyses integrating copy number and gene expression can contribute to unveil the molecular mechanisms of cancer and identify new subtype-specific biomarkers.
    Keywords copy number alteration ; gene expression ; breast cancer subtypes ; Medicine (General) ; R5-920
    Subject code 616
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data

    Claudia Cava / Soudabeh Sabetian / Isabella Castiglioni

    Entropy, Vol 23, Iss 2, p

    2021  Volume 225

    Abstract: The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or ... ...

    Abstract The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.
    Keywords protein network ; bioinformatics ; breast cancer ; copy number alteration ; Science ; Q ; Astrophysics ; QB460-466 ; Physics ; QC1-999
    Subject code 616
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Book ; Online: In Silico Discovery of Candidate Drugs against Covid-19

    Claudia Cava / Gloria Bertoli / Isabella Castiglioni

    Viruses ; Volume 12 ; Issue 4

    2020  

    Abstract: Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated ... ...

    Abstract Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated in silico the basic mechanism of ACE2 in the lung and provided evidences for new potentially effective drugs for Covid-19. Specifically, we used the gene expression profiles from public datasets including The Cancer Genome Atlas, Gene Expression Omnibus and Genotype-Tissue Expression, Gene Ontology and pathway enrichment analysis to investigate the main functions of ACE2-correlated genes. We constructed a protein-protein interaction network containing the genes co-expressed with ACE2. Finally, we focused on the genes in the network that are already associated with known drugs and evaluated their role for a potential treatment of Covid-19. Our results demonstrate that the genes correlated with ACE2 are mainly enriched in the sterol biosynthetic process, Aryldialkylphosphatase activity, adenosylhomocysteinase activity, trialkylsulfonium hydrolase activity, acetate-CoA and CoA ligase activity. We identified a network of 193 genes, 222 interactions and 36 potential drugs that could have a crucial role. Among possible interesting drugs for Covid-19 treatment, we found Nimesulide, Fluticasone Propionate, Thiabendazole, Photofrin, Didanosine and Flutamide.
    Keywords bioinformatics ; covid-19 ; drugs ; gene network ; covid19
    Subject code 570
    Language English
    Publishing date 2020-04-06
    Publisher Multidisciplinary Digital Publishing Institute
    Publishing country ch
    Document type Book ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: In Silico Discovery of Candidate Drugs against Covid-19

    Claudia Cava / Gloria Bertoli / Isabella Castiglioni

    Viruses, Vol 12, Iss 404, p

    2020  Volume 404

    Abstract: Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated ... ...

    Abstract Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated in silico the basic mechanism of ACE2 in the lung and provided evidences for new potentially effective drugs for Covid-19. Specifically, we used the gene expression profiles from public datasets including The Cancer Genome Atlas, Gene Expression Omnibus and Genotype-Tissue Expression, Gene Ontology and pathway enrichment analysis to investigate the main functions of ACE2 -correlated genes. We constructed a protein-protein interaction network containing the genes co-expressed with ACE2 . Finally, we focused on the genes in the network that are already associated with known drugs and evaluated their role for a potential treatment of Covid-19. Our results demonstrate that the genes correlated with ACE2 are mainly enriched in the sterol biosynthetic process, Aryldialkylphosphatase activity, adenosylhomocysteinase activity, trialkylsulfonium hydrolase activity, acetate-CoA and CoA ligase activity. We identified a network of 193 genes, 222 interactions and 36 potential drugs that could have a crucial role. Among possible interesting drugs for Covid-19 treatment, we found Nimesulide, Fluticasone Propionate, Thiabendazole, Photofrin, Didanosine and Flutamide.
    Keywords bioinformatics ; covid-19 ; drugs ; gene network ; Microbiology ; QR1-502 ; covid19
    Subject code 570
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: A protein interaction map identifies existing drugs targeting SARS-CoV-2

    Claudia Cava / Gloria Bertoli / Isabella Castiglioni

    BMC Pharmacology and Toxicology, Vol 21, Iss 1, Pp 1-

    2020  Volume 11

    Abstract: Abstract Background Severe acute respiratory syndrome coronavirus (SARS-CoV-2), an emerging Betacoronavirus, is the causative agent of COVID-19. Angiotensin converting enzyme 2 (ACE2), being the main cell receptor of SARS-CoV-2, plays a role in the entry ...

    Abstract Abstract Background Severe acute respiratory syndrome coronavirus (SARS-CoV-2), an emerging Betacoronavirus, is the causative agent of COVID-19. Angiotensin converting enzyme 2 (ACE2), being the main cell receptor of SARS-CoV-2, plays a role in the entry of the virus into the cell. Currently, there are neither specific antiviral drugs for the treatment or preventive drugs such as vaccines. Methods We proposed a bioinformatics analysis to test in silico existing drugs as a fast way to identify an efficient therapy. We performed a differential expression analysis in order to identify differentially expressed genes in COVID-19 patients correlated with ACE-2 and we explored their direct relations with a network approach integrating also drug-gene interactions. The drugs with a central role in the network were also investigated with a molecular docking analysis. Results We found 825 differentially expressed genes correlated with ACE2. The protein-protein interactions among differentially expressed genes identified a network of 474 genes and 1130 interactions. Conclusions The integration of drug-gene interactions in the network and molecular docking analysis allows us to obtain several drugs with antiviral activity that, alone or in combination with other treatment options, could be considered as therapeutic approaches against COVID-19.
    Keywords COVID-19 ; SARS-CoV-2 ; Drug ; Network ; In silico analysis ; Molecular docking ; Therapeutics. Pharmacology ; RM1-950 ; Toxicology. Poisons ; RA1190-1270 ; covid19
    Subject code 572
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Minor Allele Frequencies and Molecular Pathways Differences for SNPs Associated with Amyotrophic Lateral Sclerosis in Subjects Participating in the UKBB and 1000 Genomes Project

    Salvatore D’Antona / Gloria Bertoli / Isabella Castiglioni / Claudia Cava

    Journal of Clinical Medicine, Vol 10, Iss 3394, p

    2021  Volume 3394

    Abstract: Amyotrophic lateral sclerosis (ALS) is a complex disease with a late onset and is characterized by the progressive loss of muscular and respiratory functions. Although recent studies have partially elucidated ALS’s mechanisms, many questions remain such ... ...

    Abstract Amyotrophic lateral sclerosis (ALS) is a complex disease with a late onset and is characterized by the progressive loss of muscular and respiratory functions. Although recent studies have partially elucidated ALS’s mechanisms, many questions remain such as what the most important molecular pathways involved in ALS are and why there is such a large difference in ALS onset among different populations. In this study, we addressed this issue with a bioinformatics approach, using the United Kingdom Biobank (UKBB) and the European 1000 Genomes Project (1KG) in order to analyze the most ALS-representative single nucleotide polymorphisms (SNPs) that differ for minor allele frequency (MAF) between the United Kingdom population and some European populations including Finnish in Finland, Iberian population in Spain, and Tuscans in Italy. We found 84 SNPs associated with 46 genes that are involved in different pathways including: “Ca 2+ activated K + channels”, “cGMP effects”, ”Nitric oxide stimulates guanylate cyclase”, “Proton/oligopeptide cotransporters”, and “Signaling by MAPK mutants”. In addition, we revealed that 83% of the 84 SNPs can alter transcription factor-motives binding sites of 224 genes implicated in “Regulation of beta-cell development”, “Transcription-al regulation by RUNX3 ”, “Transcriptional regulation of pluripotent stem cells”, and “FOXO-mediated transcription of cell death genes”. In conclusion, the genes and pathways analyzed could explain the cause of the difference of ALS onset.
    Keywords ALS ; amyotrophic lateral sclerosis ; motor neuron degeneration ; molecular pathways ; minor allele frequencies ; UKBB ; Medicine ; R
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Identification of long non-coding RNAs and RNA binding proteins in breast cancer subtypes

    Claudia Cava / Alexandros Armaos / Benjamin Lang / Gian G. Tartaglia / Isabella Castiglioni

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 13

    Abstract: Abstract Breast cancer is a heterogeneous disease classified into four main subtypes with different clinical outcomes, such as patient survival, prognosis, and relapse. Current genetic tests for the differential diagnosis of BC subtypes showed a poor ... ...

    Abstract Abstract Breast cancer is a heterogeneous disease classified into four main subtypes with different clinical outcomes, such as patient survival, prognosis, and relapse. Current genetic tests for the differential diagnosis of BC subtypes showed a poor reproducibility. Therefore, an early and correct diagnosis of molecular subtypes is one of the challenges in the clinic. In the present study, we identified differentially expressed genes, long non-coding RNAs and RNA binding proteins for each BC subtype from a public dataset applying bioinformatics algorithms. In addition, we investigated their interactions and we proposed interacting biomarkers as potential signature specific for each BC subtype. We found a network of only 2 RBPs (RBM20 and PCDH20) and 2 genes (HOXB3 and RASSF7) for luminal A, a network of 21 RBPs and 53 genes for luminal B, a HER2-specific network of 14 RBPs and 30 genes, and a network of 54 RBPs and 302 genes for basal BC. We validated the signature considering their expression levels on an independent dataset evaluating their ability to classify the different molecular subtypes with a machine learning approach. Overall, we achieved good performances of classification with an accuracy >0.80. In addition, we found some interesting novel prognostic biomarkers such as RASSF7 for luminal A, DCTPP1 for luminal B, DHRS11, KLC3, NAGS, and TMEM98 for HER2, and ABHD14A and ADSSL1 for basal. The findings could provide preliminary evidence to identify putative new prognostic biomarkers and therapeutic targets for individual breast cancer subtypes.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top