LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Myeloid deletion of talin-1 reduces mucosal macrophages and protects mice from colonic inflammation

    Yvonne L. Latour / Kara M. McNamara / Margaret M. Allaman / Daniel P. Barry / Thaddeus M. Smith / Mohammad Asim / Kamery J. Williams / Caroline V. Hawkins / Justin Jacobse / Jeremy A. Goettel / Alberto G. Delgado / M. Blanca Piazuelo / M. Kay Washington / Alain P. Gobert / Keith T. Wilson

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 11

    Abstract: Abstract The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors ... ...

    Abstract Abstract The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570 ; 616
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Hypusination Orchestrates the Antimicrobial Response of Macrophages

    Alain P. Gobert / Jordan L. Finley / Yvonne L. Latour / Mohammad Asim / Thaddeus M. Smith / Thomas G. Verriere / Daniel P. Barry / Margaret M. Allaman / Alberto G. Delagado / Kristie L. Rose / M. Wade Calcutt / Kevin L. Schey / Johanna C. Sierra / M. Blanca Piazuelo / Raghavendra G. Mirmira / Keith T. Wilson

    Cell Reports, Vol 33, Iss 11, Pp 108510- (2020)

    2020  

    Abstract: Summary: Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor ...

    Abstract Summary: Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.
    Keywords macrophages ; bacterial infection ; innate immunity ; hypusine ; polyamines ; Helicobacter pylori ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2020-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria.

    Kshipra Singh / Nicole T Al-Greene / Thomas G Verriere / Lori A Coburn / Mohammad Asim / Daniel P Barry / Margaret M Allaman / Dana M Hardbower / Alberto G Delgado / M Blanca Piazuelo / Bruce A Vallance / Alain P Gobert / Keith T Wilson

    PLoS Pathogens, Vol 12, Iss 10, p e

    2016  Volume 1005984

    Abstract: Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter ... ...

    Abstract Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter rodentium, an attaching and effacing enteric pathogen that causes colitis. Induction of SLC7A2 was upregulated in colitis tissues, and localized predominantly to colonic epithelial cells. Compared to wild-type mice, Slc7a2-/-mice infected with C. rodentium had improved survival and decreased weight loss, colon weight, and histologic injury; this was associated with decreased colonic macrophages, dendritic cells, granulocytes, and Th1 and Th17 cells. In infected Slc7a2-/-mice, there were decreased levels of the proinflammatory cytokines G-CSF, TNF-α, IL-1α, IL-1β, and the chemokines CXCL1, CCL2, CCL3, CCL4, CXCL2, and CCL5. In bone marrow chimeras, the recipient genotype drove the colitis phenotype, indicative of the importance of epithelial, rather than myeloid SLC7A2. Mice lacking Slc7a2 exhibited reduced adherence of C. rodentium to the colonic epithelium and decreased expression of Talin-1, a focal adhesion protein involved in the attachment of the bacterium. The importance of SLC7A2 and Talin-1 in the intimate attachment of C. rodentium and induction of inflammatory response was confirmed in vitro, using conditionally-immortalized young adult mouse colon (YAMC) cells with shRNA knockdown of Slc7a2 or Tln1. Inhibition of L-Arg uptake with the competitive inhibitor, L-lysine (L-Lys), also prevented attachment of C. rodentium and chemokine expression. L-Lys and siRNA knockdown confirmed the role of L-Arg and SLC7A2 in human Caco-2 cells co-cultured with enteropathogenic Escherichia coli. Overexpression of SLC7A2 in human embryonic kidney cells increased bacterial adherence and chemokine expression. Taken together, our data indicate that C. rodentium enhances its own pathogenicity by inducing the expression of SLC7A2 to favor its attachment to the epithelium and ...
    Keywords Immunologic diseases. Allergy ; RC581-607 ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2016-10-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction.

    Daniel P Barry / Mohammad Asim / David A Leiman / Thibaut de Sablet / Kshipra Singh / Robert A Casero / Rupesh Chaturvedi / Keith T Wilson

    PLoS ONE, Vol 6, Iss 2, p e

    2011  Volume 17510

    Abstract: Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by ... ...

    Abstract Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% D,L-α-difluoromethylornithine (DFMO) to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2011-02-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis.

    Lori A Coburn / Xue Gong / Kshipra Singh / Mohammad Asim / Brooks P Scull / Margaret M Allaman / Christopher S Williams / Michael J Rosen / M Kay Washington / Daniel P Barry / M Blanca Piazuelo / Robert A Casero / Rupesh Chaturvedi / Zhongming Zhao / Keith T Wilson

    PLoS ONE, Vol 7, Iss 3, p e

    2012  Volume 33546

    Abstract: Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L- ... ...

    Abstract Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Daniel P Barry / Mohammad Asim / Brooks P Scull / M Blanca Piazuelo / Thibaut de Sablet / Nuruddeen D Lewis / Lori A Coburn / Kshipra Singh / Lesley G Ellies / Alain P Gobert / Rupesh Chaturvedi / Keith T Wilson

    PLoS ONE, Vol 6, Iss 12, p e

    2011  Volume 29046

    Abstract: Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of ... ...

    Abstract Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top