LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: A Step towards Neuro-Steered Hearing Aids

    Dasenbrock Steffen / Blum Sarah / Debener Stefan / Hohmann Volker / Kayser Hendrik

    Current Directions in Biomedical Engineering, Vol 7, Iss 2, Pp 855-

    Integrated Portable Setup for Time- Synchronized Acoustic Stimuli Presentation and EEG Recording

    2021  Volume 858

    Abstract: Aiming to provide a portable research platform to develop algorithms for neuro-steered hearing aids, a joint hearing aid - EEG measurement setup was implemented in this work. The setup combines the miniaturized electroencephalography sensor technology ... ...

    Abstract Aiming to provide a portable research platform to develop algorithms for neuro-steered hearing aids, a joint hearing aid - EEG measurement setup was implemented in this work. The setup combines the miniaturized electroencephalography sensor technology cEEGrid with a portable hearing aid research platform - the Portable Hearing Laboratory. The different components of the system are connected wirelessly, using the lab streaming layer framework for synchronization of audio and EEG data streams. Our setup was shown to be suitable for simultaneous recording of audio and EEG signals used in a pilot study (n=5) to perform an auditory Oddball experiment. The analysis showed that the setup can reliably capture typical event-related potential responses. Furthermore, linear discriminant analysis was successfully applied for single-trial classification of P300 responses. The study showed that time-synchronized audio and EEG data acquisition is possible with the Portable Hearing Laboratory research platform.
    Keywords portable hearing laboratory ; open master hearing aid ; openmha ; hearing aids ; ceegrid ; around-theear eeg ; eeg ; portable setup ; auditory oddball ; Medicine ; R
    Subject code 390
    Language English
    Publishing date 2021-10-01T00:00:00Z
    Publisher De Gruyter
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article: Synchronization of ear-EEG and audio streams in a portable research hearing device.

    Dasenbrock, Steffen / Blum, Sarah / Maanen, Paul / Debener, Stefan / Hohmann, Volker / Kayser, Hendrik

    Frontiers in neuroscience

    2022  Volume 16, Page(s) 904003

    Abstract: Recent advancements in neuroscientific research and miniaturized ear-electroencephalography (EEG) technologies have led to the idea of employing brain signals as additional input to hearing aid algorithms. The information acquired through EEG could ... ...

    Abstract Recent advancements in neuroscientific research and miniaturized ear-electroencephalography (EEG) technologies have led to the idea of employing brain signals as additional input to hearing aid algorithms. The information acquired through EEG could potentially be used to control the audio signal processing of the hearing aid or to monitor communication-related physiological factors. In previous work, we implemented a research platform to develop methods that utilize EEG in combination with a hearing device. The setup combines currently available mobile EEG hardware and the so-called Portable Hearing Laboratory (PHL), which can fully replicate a complete hearing aid. Audio and EEG data are synchronized using the Lab Streaming Layer (LSL) framework. In this study, we evaluated the setup in three scenarios focusing particularly on the alignment of audio and EEG data. In Scenario I, we measured the latency between software event markers and actual audio playback of the PHL. In Scenario II, we measured the latency between an analog input signal and the sampled data stream of the EEG system. In Scenario III, we measured the latency in the whole setup as it would be used in a real EEG experiment. The results of Scenario I showed a jitter (standard deviation of trial latencies) of below 0.1 ms. The jitter in Scenarios II and III was around 3 ms in both cases. The results suggest that the increased jitter compared to Scenario I can be attributed to the EEG system. Overall, the findings show that the measurement setup can time-accurately present acoustic stimuli while generating LSL data streams over multiple hours of playback. Further, the setup can capture the audio and EEG LSL streams with sufficient temporal accuracy to extract event-related potentials from EEG signals. We conclude that our setup is suitable for studying closed-loop EEG & audio applications for future hearing aids.
    Language English
    Publishing date 2022-09-01
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2411902-7
    ISSN 1662-453X ; 1662-4548
    ISSN (online) 1662-453X
    ISSN 1662-4548
    DOI 10.3389/fnins.2022.904003
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top