LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 16

Search options

  1. Article ; Online: Airway Mucus and Asthma

    Luke R. Bonser / David J. Erle

    Journal of Clinical Medicine, Vol 6, Iss 12, p

    The Role of MUC5AC and MUC5B

    2017  Volume 112

    Abstract: Asthma is characterized by mucus abnormalities. Airway epithelial hyperplasia and metaplasia result in changes in stored and secreted mucin and the production of a pathologic mucus gel. Mucus transport is impaired, culminating in mucus plugging and ... ...

    Abstract Asthma is characterized by mucus abnormalities. Airway epithelial hyperplasia and metaplasia result in changes in stored and secreted mucin and the production of a pathologic mucus gel. Mucus transport is impaired, culminating in mucus plugging and airway obstruction—a major cause of morbidity in asthma. The polymeric mucins MUC5AC and MUC5B are integral components of airway mucus. MUC5AC and MUC5B gene expression is altered in asthma, and recent work sheds light on their contribution to asthma pathogenesis. Herein, we review our current understanding of the role of MUC5AC and MUC5B in mucus dysfunction in asthma.
    Keywords MUC5AC ; MUC5B ; asthma ; Medicine ; R
    Language English
    Publishing date 2017-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: GCLiPP

    Wandi S. Zhu / Adam J. Litterman / Harshaan S. Sekhon / Robin Kageyama / Maya M. Arce / Kimberly E. Taylor / Wenxue Zhao / Lindsey A. Criswell / Noah Zaitlen / David J. Erle / K. Mark Ansel

    Genome Biology, Vol 24, Iss 1, Pp 1-

    global crosslinking and protein purification method for constructing high-resolution occupancy maps for RNA binding proteins

    2023  Volume 30

    Abstract: Abstract GCLiPP is a global RNA interactome capture method that detects RNA-binding protein (RBP) occupancy transcriptome-wide. GCLiPP maps RBP-occupied sites at a higher resolution than phase separation-based techniques. GCLiPP sequence tags correspond ... ...

    Abstract Abstract GCLiPP is a global RNA interactome capture method that detects RNA-binding protein (RBP) occupancy transcriptome-wide. GCLiPP maps RBP-occupied sites at a higher resolution than phase separation-based techniques. GCLiPP sequence tags correspond with known RBP binding sites and are enriched for sites detected by RBP-specific crosslinking immunoprecipitation (CLIP) for abundant cytosolic RBPs. Comparison of human Jurkat T cells and mouse primary T cells uncovers shared peaks of GCLiPP signal across homologous regions of human and mouse 3′ UTRs, including a conserved mRNA-destabilizing cis-regulatory element. GCLiPP signal overlapping with immune-related SNPs uncovers stabilizing cis-regulatory regions in CD5, STAT6, and IKZF1.
    Keywords Post-transcriptional regulation ; RNA-binding proteins (RBP) ; T cells ; Cis-regulatory elements ; Biology (General) ; QH301-705.5 ; Genetics ; QH426-470
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol.

    Ali Reza Khosravi / David J Erle

    PLoS ONE, Vol 11, Iss 7, p e

    2016  Volume 0159459

    Abstract: Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against ... ...

    Abstract Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma

    Kyung Duk Koh / Luke R. Bonser / Walter L. Eckalbar / Ofer Yizhar-Barnea / Jiangshan Shen / Xiaoning Zeng / Kirsten L. Hargett / Dingyuan I. Sun / Lorna T. Zlock / Walter E. Finkbeiner / Nadav Ahituv / David J. Erle

    Cell Genomics, Vol 3, Iss 1, Pp 100229- (2023)

    2023  

    Abstract: Summary: Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to ... ...

    Abstract Summary: Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
    Keywords enhancer ; IL-13 ; cell-specific ; CRISPRi ; HBEC ; SPDEF ; Genetics ; QH426-470 ; Internal medicine ; RC31-1245
    Subject code 572
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Comparison of Reproducibility, Accuracy, Sensitivity, and Specificity of miRNA Quantification Platforms

    Paula M. Godoy / Andrea J. Barczak / Peter DeHoff / Srimeenakshi Srinivasan / Alton Etheridge / David Galas / Saumya Das / David J. Erle / Louise C. Laurent

    Cell Reports, Vol 29, Iss 12, Pp 4212-4222.e

    2019  Volume 5

    Abstract: Summary: Given the increasing interest in their use as disease biomarkers, the establishment of reproducible, accurate, sensitive, and specific platforms for microRNA (miRNA) quantification in biofluids is of high priority. We compare four platforms for ... ...

    Abstract Summary: Given the increasing interest in their use as disease biomarkers, the establishment of reproducible, accurate, sensitive, and specific platforms for microRNA (miRNA) quantification in biofluids is of high priority. We compare four platforms for these characteristics: small RNA sequencing (RNA-seq), FirePlex, EdgeSeq, and nCounter. For a pool of synthetic miRNAs, coefficients of variation for technical replicates are lower for EdgeSeq (6.9%) and RNA-seq (8.2%) than for FirePlex (22.4%); nCounter replicates are not performed. Receiver operating characteristic analysis for distinguishing present versus absent miRNAs shows small RNA-seq (area under curve 0.99) is superior to EdgeSeq (0.97), nCounter (0.94), and FirePlex (0.81). Expected differences in expression of placenta-associated miRNAs in plasma from pregnant and non-pregnant women are observed with RNA-seq and EdgeSeq, but not FirePlex or nCounter. These results indicate that differences in performance among miRNA profiling platforms impact ability to detect biological differences among samples and thus their relative utility for research and clinical use. : Using pools of synthetic RNA oligonucleotides and standardized extracellular RNA samples, Godoy et al. compare small RNA sequencing to three targeted miRNA quantification platforms to evaluate reproducibility, bias, specificity and sensitivity, and accuracy. Each platform has strengths and limitations important to consider for biomarker discovery, clinical validation, and broad clinical use. Keywords: small RNA-sequencing, HTG Molecular EdgeSeq, Abcam FirePlex, NanoString nCounter, miRNA quantification, extracellular RNA
    Keywords Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Epithelial miR-141 regulates IL-13–induced airway mucus production

    Sana Siddiqui / Kristina Johansson / Alex Joo / Luke R. Bonser / Kyung Duk Koh / Olivier Le Tonqueze / Samaneh Bolourchi / Rodriel A. Bautista / Lorna Zlock / Theodore L. Roth / Alexander Marson / Nirav R. Bhakta / K. Mark Ansel / Walter E. Finkbeiner / David J. Erle / Prescott G. Woodruff

    JCI Insight, Vol 6, Iss

    2021  Volume 5

    Abstract: IL-13–induced goblet cell metaplasia contributes to airway remodeling and pathological mucus hypersecretion in asthma. miRNAs are potent modulators of cellular responses, but their role in mucus regulation is largely unexplored. We hypothesized that ... ...

    Abstract IL-13–induced goblet cell metaplasia contributes to airway remodeling and pathological mucus hypersecretion in asthma. miRNAs are potent modulators of cellular responses, but their role in mucus regulation is largely unexplored. We hypothesized that airway epithelial miRNAs play roles in IL-13–induced mucus regulation. miR-141 is highly expressed in human and mouse airway epithelium, is altered in bronchial brushings from asthmatic subjects at baseline, and is induced shortly after airway allergen exposure. We established a CRISPR/Cas9-based protocol to target miR-141 in primary human bronchial epithelial cells that were differentiated at air-liquid-interface, and goblet cell hyperplasia was induced by IL-13 stimulation. miR-141 disruption resulted in decreased goblet cell frequency, intracellular MUC5AC, and total secreted mucus. These effects correlated with a reduction in a goblet cell gene expression signature and enrichment of a basal cell gene expression signature defined by single cell RNA sequencing. Furthermore, intranasal administration of a sequence-specific mmu-miR-141-3p inhibitor in mice decreased Aspergillus-induced secreted mucus and mucus-producing cells in the lung and reduced airway hyperresponsiveness without affecting cellular inflammation. In conclusion, we have identified a miRNA that regulates pathological airway mucus production and is amenable to therapeutic manipulation through an inhaled route.
    Keywords Pulmonology ; Medicine ; R
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher American Society for Clinical investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article: Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease

    Van Dyken, Steven J / David J. Erle / Hong-Erh Liang / Paul J. Wolters / Prescott G. Woodruff / Ram P. Naikawadi / Richard M. Locksley

    Cell. 2017 Apr. 20, v. 169

    2017  

    Abstract: The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. ...

    Abstract The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.
    Keywords chitin ; chitinase ; cytokines ; epithelial cells ; fibrosis ; fungi ; genes ; humans ; loci ; mice ; morbidity ; mortality ; physiology ; polymers ; respiratory tract diseases ; telomeres
    Language English
    Dates of publication 2017-0420
    Size p. 497-509.e13.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 187009-9
    ISSN 1097-4172 ; 0092-8674
    ISSN (online) 1097-4172
    ISSN 0092-8674
    DOI 10.1016/j.cell.2017.03.044
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  8. Article ; Online: Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes

    Al Ozonoff / Naresh Doni Jayavelu / Shanshan Liu / Esther Melamed / Carly E. Milliren / Jingjing Qi / Linda N. Geng / Grace A. McComsey / Charles B. Cairns / Lindsey R. Baden / Joanna Schaenman / Albert C. Shaw / Hady Samaha / Vicki Seyfert-Margolis / Florian Krammer / Lindsey B. Rosen / Hanno Steen / Caitlin Syphurs / Ravi Dandekar /
    Casey P. Shannon / Rafick P. Sekaly / Lauren I. R. Ehrlich / David B. Corry / Farrah Kheradmand / Mark A. Atkinson / Scott C. Brakenridge / Nelson I. Agudelo Higuita / Jordan P. Metcalf / Catherine L. Hough / William B. Messer / Bali Pulendran / Kari C. Nadeau / Mark M. Davis / Ana Fernandez Sesma / Viviana Simon / Harm van Bakel / Seunghee Kim-Schulze / David A. Hafler / Ofer Levy / Monica Kraft / Chris Bime / Elias K. Haddad / Carolyn S. Calfee / David J. Erle / Charles R. Langelier / Walter Eckalbar / Steven E. Bosinger / IMPACC Network / Bjoern Peters / Steven H. Kleinstein / Elaine F. Reed / Alison D. Augustine / Joann Diray-Arce / Holden T. Maecker / Matthew C. Altman / Ruth R. Montgomery / Patrice M. Becker / Nadine Rouphael

    Nature Communications, Vol 15, Iss 1, Pp 1-

    results from the IMPACC study

    2024  Volume 17

    Abstract: Abstract Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. ... ...

    Abstract Abstract Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.
    Keywords Science ; Q
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells

    Darienne R. Myers / Tannia Lau / Evan Markegard / Hyung W. Lim / Herbert Kasler / Minghua Zhu / Andrea Barczak / John P. Huizar / Julie Zikherman / David J. Erle / Weiguo Zhang / Eric Verdin / Jeroen P. Roose

    Cell Reports, Vol 19, Iss 8, Pp 1558-

    2017  Volume 1571

    Abstract: CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward ... ...

    Abstract CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.
    Keywords tonic signals ; T cells ; LAT ; HDAC ; gene expression ; Th2 ; Nur77 ; Irf4 ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2017-05-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells.

    Imran S Khan / Chong Y Park / Anastasia Mavropoulos / Nikki Shariat / Joshua L Pollack / Andrea J Barczak / David J Erle / Michael T McManus / Mark S Anderson / Lukas T Jeker

    PLoS ONE, Vol 10, Iss 8, p e

    2015  Volume 0135440

    Abstract: Thymic epithelial cells (TECs) support T cell development in the thymus. Cortical thymic epithelial cells (cTECs) facilitate positive selection of developing thymocytes whereas medullary thymic epithelial cells (mTECs) facilitate the deletion of self- ... ...

    Abstract Thymic epithelial cells (TECs) support T cell development in the thymus. Cortical thymic epithelial cells (cTECs) facilitate positive selection of developing thymocytes whereas medullary thymic epithelial cells (mTECs) facilitate the deletion of self-reactive thymocytes in order to prevent autoimmunity. The mTEC compartment is highly dynamic with continuous maturation and turnover, but the genetic regulation of these processes remains poorly understood. MicroRNAs (miRNAs) are important regulators of TEC genetic programs since miRNA-deficient TECs are severely defective. However, the individual miRNAs important for TEC maintenance and function and their mechanisms of action remain unknown. Here, we demonstrate that miR-205 is highly and preferentially expressed in mTECs during both thymic ontogeny and in the postnatal thymus. This distinct expression is suggestive of functional importance for TEC biology. Genetic ablation of miR-205 in TECs, however, neither revealed a role for miR-205 in TEC function during homeostatic conditions nor during recovery from thymic stress conditions. Thus, despite its distinct expression, miR-205 on its own is largely dispensable for mTEC biology.
    Keywords Medicine ; R ; Science ; Q
    Subject code 500
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top