LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip

    M. Tyler Nelson / Mark R. Charbonneau / Heidi G. Coia / Mary J. Castillo / Corey Holt / Eric S. Greenwood / Peter J. Robinson / Elaine A. Merrill / David Lubkowicz / Camilla A. Mauzy

    Nature Communications, Vol 12, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Engineered live bacteria could represent a new class of therapeutic treatment for human disease. Here, the authors use a human gut-on-a-chip microfluidics system to characterize an engineered live bacterial therapeutic, designed for the treatment of ... ...

    Abstract Engineered live bacteria could represent a new class of therapeutic treatment for human disease. Here, the authors use a human gut-on-a-chip microfluidics system to characterize an engineered live bacterial therapeutic, designed for the treatment of phenylketonuria, and to construct mathematical models that predict therapeutic strain function in non-human primates.
    Keywords Science ; Q
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: An engineered bacterial therapeutic lowers urinary oxalate in preclinical models and in silico simulations of enteric hyperoxaluria

    David Lubkowicz / Nicholas G Horvath / Michael J James / Pasquale Cantarella / Lauren Renaud / Christopher G Bergeron / Ron B Shmueli / Cami Anderson / Jian‐Rong Gao / Caroline B Kurtz / Mylene Perreault / Mark R Charbonneau / Vincent M Isabella / David L Hava

    Molecular Systems Biology, Vol 18, Iss 3, Pp n/a-n/a (2022)

    2022  

    Abstract: Abstract Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an ... ...

    Abstract Abstract Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non‐human primates, demonstrating the strain's ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.
    Keywords engineered bacteria ; enteric hyperoxaluria ; in silico modeling ; oxalate ; synthetic biology ; Biology (General) ; QH301-705.5 ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top