LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 10

Search options

  1. Article ; Online: Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases

    Jeyashree Alagarsamy / Anja Jaeschke / David Y. Hui

    International Journal of Molecular Sciences, Vol 23, Iss 9892, p

    2022  Volume 9892

    Abstract: A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, ... ...

    Abstract A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
    Keywords apolipoprotein E (apoE) ; lipoprotein receptors ; atherosclerosis ; inflammatory response ; Alzheimer’s disease ; signal transduction ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Therapeutic reduction of lysophospholipids in the digestive tract recapitulates the metabolic benefits of bariatric surgery and promotes diabetes remission

    James G. Cash / Eddy Konaniah / Narasimha Hegde / David G. Kuhel / Miki Watanabe / Lindsey Romick-Rosendale / David Y. Hui

    Molecular Metabolism, Vol 16, Iss , Pp 55-

    2018  Volume 64

    Abstract: Objective: Obesity and obesity-related metabolic disorders are major health problems worldwide. The most effective obesity intervention is bariatric surgery. This study tested the hypothesis that bariatric surgery alters phospholipid metabolism in the ... ...

    Abstract Objective: Obesity and obesity-related metabolic disorders are major health problems worldwide. The most effective obesity intervention is bariatric surgery. This study tested the hypothesis that bariatric surgery alters phospholipid metabolism in the gastrointestinal tract to favor a metabolically healthy gut microbiota profile and therapeutic intervention of phospholipid metabolism in the gastrointestinal may have similar metabolic benefits. Methods: The first study compared plasma levels of the bioactive lipid metabolites lysophospholipid and trimethylamine N-oxide (TMAO) as well as gut microbiota profile in high fat/carbohydrate (HFHC) diet-fed C57BL/6 mice with or without vertical sleeve gastrectomy (VSG) and in Pla2g1b−/− mice with group 1B phospholipase A2 gene inactivation. The second study examined the effectiveness of the non-absorbable secretory phospholipase A2 inhibitor methyl indoxam to reverse hyperglycemia and hyperlipidemia in HFHC diet-fed C57BL/6 mice after diabetes onset. Results: Both bariatric surgery and PLA2G1B inactivation were shown to reduce lysophospholipid content in the gastrointestinal tract, resulting in resistance to HFHC diet-induced alterations of the gut microbiota, reduction of the cardiovascular risk factors hyperlipidemia and TMAO, decreased adiposity, and prevention of HFHC diet-induced diabetes. Importantly, treatment of wild type mice with methyl indoxam after HFHC diet-induced onset of hyperlipidemia and hyperglycemia effectively restored normal plasma lipid and glucose levels and replicated the metabolic benefits of VSG surgery with diabetes remission and TMAO reduction. Conclusion: These results provided pre-clinical evidence that PLA2G1B inhibition in the digestive tract may be a viable alternative option to bariatric surgery for obesity and obesity-related cardiometabolic disorder intervention. Keywords: Phospholipase A2, Gut microbiota, Cardiometabolic disease, Bariatric surgery, Lysophospholipid
    Keywords Internal medicine ; RC31-1245
    Subject code 616
    Language English
    Publishing date 2018-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Distinct Influence of Hypercaloric Diets Predominant with Fat or Fat and Sucrose on Adipose Tissue and Liver Inflammation in Mice

    Caíque S. M. Fonseca / Joshua E. Basford / David G. Kuhel / Eddy S. Konaniah / James G. Cash / Vera L. M. Lima / David Y. Hui

    Molecules, Vol 25, Iss 4369, p

    2020  Volume 4369

    Abstract: Overfeeding of a hypercaloric diet leads to obesity, diabetes, chronic inflammation, and fatty liver disease. Although limiting fat or carbohydrate intake is the cornerstone for obesity management, whether lowering fat or reducing carbohydrate intake is ... ...

    Abstract Overfeeding of a hypercaloric diet leads to obesity, diabetes, chronic inflammation, and fatty liver disease. Although limiting fat or carbohydrate intake is the cornerstone for obesity management, whether lowering fat or reducing carbohydrate intake is more effective for health management remains controversial. This study used murine models to determine how dietary fat and carbohydrates may influence metabolic disease manifestation. Age-matched C57BL/6J mice were fed 2 hypercaloric diets with similar caloric content, one with very high fat and low carbohydrate content (VHF) and the other with moderately high fat levels with high sucrose content (HFHS) for 12 weeks. Both groups gained more weight and displayed hypercholesterolemia, hyperglycemia, hyperinsulinemia, and liver steatosis compared to mice fed a normal low-fat (LF) diet. Interestingly, the VHF-fed mice showed a more robust adipose tissue inflammation compared to HFHS-fed mice, whereas HFHS-fed mice showed liver fibrosis and inflammation that was not observed in VHF-fed mice. Taken together, these results indicate macronutrient-specific tissue inflammation with excess dietary fat provoking adipose tissue inflammation, whereas moderately high dietary fat with extra sucrose is necessary and sufficient for hepatosteatosis advancement to steatohepatitis. Hence, liver and adipose tissues respond to dietary fat and sucrose in opposite manners, yet both macronutrients are contributing factors to metabolic diseases.
    Keywords dietary fat ; sucrose ; adipose tissue inflammation ; NAFLD ; steatohepatitis ; metabolic disease ; Organic chemistry ; QD241-441
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: 3280 Mycobacterium bovis Bacille-Calmette-Guérin infection aggravates atherosclerosis

    Moises Huaman / Joseph E. Qualls / David Kuhel / Shinsmon Jose / Eddy Konaniah / Ravi Komaravolu / Carl J. Fichtenbaum / George S. Deepe / David Y. Hui

    Journal of Clinical and Translational Science, Vol 3, Pp 110-

    2019  Volume 110

    Abstract: OBJECTIVES/SPECIFIC AIMS: The study aimed at assessing whether M. bovis BCG infection and inflammation exacerbates the development of atherosclerosis in Ldlr-/- mice. METHODS/STUDY POPULATION: Twelve-week old male Ldlr-/- mice (n=10) were infected with M. ...

    Abstract OBJECTIVES/SPECIFIC AIMS: The study aimed at assessing whether M. bovis BCG infection and inflammation exacerbates the development of atherosclerosis in Ldlr-/- mice. METHODS/STUDY POPULATION: Twelve-week old male Ldlr-/- mice (n=10) were infected with M. bovis BCG (0.3–3.0x10^6 colony-forming units (CFUs)) via the intranasal route, to simulate a natural respiratory route of infection. Mice were subsequently fed a western-type diet (WD) containing 21% fat and 0.2% cholesterol for 16 weeks. Age-matched uninfected Ldlr-/- mice (n=10) fed with an identical WD served as controls. Mice were euthanized after 16 weeks of WD to examine atherosclerotic lesions in aortic root sections and en face aorta using Oil Red O staining. Plasma cholesterol and triglyceride levels were measured by enzymatic assays and lipoprotein distribution was assessed using fast protein liquid chromatography. Because of the important role of T cells and monocytes in atherosclerosis development, we assessed these cell subsets in blood using flow cytometry at 8 and 16 weeks. Experiments were conducted in duplicate. We used unpaired Student’s t-test for group comparisons of numeric variables and flow cytometry data. RESULTS/ANTICIPATED RESULTS: M. bovis BCG infection significantly increased atherosclerotic lesions in en face aorta (plaque size per aorta area ratio; 0.15±0.13 vs. 0.06±0.02; P<0.01), but not in the aortic root. There were no significant differences in plasma cholesterol (1,160 mg/dL vs. 1,278 mg/dL; P = 0.36), triglycerides (340 mg/dL vs. 413 mg/dL; P = 0.28), or lipoprotein profiles between infected vs. uninfected mice at 16 weeks. M. bovis BCG increased circulating T lymphocytes (1,490 cells/uL vs. 1,227 cells/uL; P = 0.03) and monocytes (901 cells/uL vs. 414 cells/uL; P<0.01) within 8 weeks post-infection. When we assessed T lymphocyte subsets, M. bovis BCG infection increased total CD4+ T cell counts (556 cells/uL vs. 416 cells/uL; P<0.01) but not CD8+ T cells. No differences in the proportion of CD44+CD25+ activated T ...
    Keywords Medicine ; R
    Subject code 570
    Language English
    Publishing date 2019-03-01T00:00:00Z
    Publisher Cambridge University Press
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Apolipoprotein E inhibition of vascular hyperplasia and neointima formation requires inducible nitric oxide synthase

    Zachary W.Q. Moore / David Y. Hui

    Journal of Lipid Research, Vol 46, Iss 10, Pp 2083-

    2005  Volume 2090

    Abstract: Previous studies have shown apolipoprotein E (apoE) recruitment to medial layers of carotid arteries after vascular injury in vivo and apoE activation of inducible nitric oxide synthase (iNOS) in smooth muscle cells in vitro. This investigation explored ... ...

    Abstract Previous studies have shown apolipoprotein E (apoE) recruitment to medial layers of carotid arteries after vascular injury in vivo and apoE activation of inducible nitric oxide synthase (iNOS) in smooth muscle cells in vitro. This investigation explored the relationship between medial apoE recruitment and iNOS activation in protection against neointimal hyperplasia. ApoE was present in both neointimal-resistant C57BL/6 mice and neointimal-susceptible FVB/N mice 24 h after carotid denudation, but iNOS expression was observed only in the neointimal-resistant C57BL/6 mice. However, iNOS was not observed in apoE-defective C57BL/6 mice. In contrast, overexpression of apoE in FVB/N mice activated iNOS expression in the injured vessels, resulting in protection against neointimal hyperplasia. ApoE and iNOS were colocalized in the medial layer of neointimal-resistant mouse strains. Endothelial denudation of carotid arteries in the iNOS-deficient NOS2−/− mice did not increase neointimal hyperplasia but significantly increased medial thickness and area. The iNOS-specific inhibitor also abrogated the apoE protective effects on vascular response to injury in apoE-overexpressing FVB/N mice.Thus, injury-induced activation of iNOS requires apoE recruitment. Moreover, both apoE and iNOS are necessary for the suppression of cell proliferation, and apoE recruitment without iNOS expression resulted in medial hyperplasia without cell migration to the intima.
    Keywords neointimal hyperplasia ; smooth muscle cells ; endothelial denudation ; vascular biology ; transgenic mice ; Biochemistry ; QD415-436
    Subject code 570
    Language English
    Publishing date 2005-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: PDZK1 prevents neointima formation via suppression of breakpoint cluster region kinase in vascular smooth muscle.

    Wan Ru Lee / Anastasia Sacharidou / Erica Behling-Kelly / Sarah C Oltmann / Weifei Zhu / Mohamed Ahmed / Robert D Gerard / David Y Hui / Jun-ichi Abe / Philip W Shaul / Chieko Mineo

    PLoS ONE, Vol 10, Iss 4, p e

    2015  Volume 0124494

    Abstract: Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work ... ...

    Abstract Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM). To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF). Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr), which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article: Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function

    Hollie, Norris I / David Y. Hui / James G. Cash / Joshua E. Basford / M. Abdul Matlib / Matthew Wortman / William Abplanalp

    BBA - Molecular and Cell Biology of Lipids. 2014 June, v. 1841

    2014  

    Abstract: Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for ... ...

    Abstract Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40–200μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220μM CaCl2, cyclosporine A protected against permeability transition induced by 40μM, but not 80μM lysophosphatidylcholine. Incubation with 40–120μM lysophosphatidylcholine also increased mitochondrial permeability to 75μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30–50% at 100μM lysophosphatidylcholine. Finally, while 40μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.
    Keywords beta oxidation ; calcium chloride ; cyclosporine ; fatty acids ; glutamic acid ; hepatocytes ; lysophosphatidylcholine ; malates ; membrane potential ; mice ; mitochondria ; mitochondrial membrane ; oxidation ; permeability ; phospholipase A2 ; succinic acid
    Language English
    Dates of publication 2014-06
    Size p. 888-895.
    Publishing place Elsevier B.V.
    Document type Article
    ISSN 1388-1981
    DOI 10.1016/j.bbalip.2013.11.013
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  8. Article ; Online: Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Joshua E Basford / Sheryl Koch / Ahmad Anjak / Vivek P Singh / Eric G Krause / Nathan Robbins / Neal L Weintraub / David Y Hui / Jack Rubinstein

    PLoS ONE, Vol 8, Iss 11, p e

    2013  Volume 82026

    Abstract: Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease ... ...

    Abstract Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1) in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: An analysis of the role of a retroendocytosis pathway in ABCA1-mediated cholesterol efflux from macrophagess⃞

    Loren E. Faulkner / Stacey E. Panagotopulos / Jacob D. Johnson / Laura A. Woollett / David Y. Hui / Scott R. Witting / J. Nicholas Maiorano / W. Sean Davidson

    Journal of Lipid Research, Vol 49, Iss 6, Pp 1322-

    2008  Volume 1332

    Abstract: The ATP binding cassette transporter A-1 (ABCA1) is critical for apolipoprotein-mediated cholesterol efflux, an important mechanism employed by macrophages to avoid becoming lipid-laden foam cells, the hallmark of early atherosclerotic lesions. It has ... ...

    Abstract The ATP binding cassette transporter A-1 (ABCA1) is critical for apolipoprotein-mediated cholesterol efflux, an important mechanism employed by macrophages to avoid becoming lipid-laden foam cells, the hallmark of early atherosclerotic lesions. It has been proposed that lipid-free apolipoprotein A-I (apoA-I) enters the cell and is resecreted as a lipidated particle via a retroendocytosis pathway during ABCA1-mediated cholesterol efflux from macrophages. To determine the functional importance of such a pathway, confocal microscopy was used to characterize the internalization of a fully functional apoA-I cysteine mutant containing a thiol-reactive fluorescent probe in cultured macrophages. ApoA-I was also endogenously labeled with 35S-methionine to quantify cellular uptake and to determine the metabolic fate of the internalized protein. It was found that apoA-I was specifically taken inside macrophages and that a small amount of intact apoA-I was resecreted from the cells. However, a majority of the label that reappeared in the media was degraded. We estimate that the mass of apoA-I retroendocytosed is not sufficient to account for the HDL produced by the cholesterol efflux reaction. Furthermore, we have demonstrated that lipid-free apoA-I-mediated cholesterol efflux from macrophages can be pharmacologically uncoupled from apoA-I internalization into cells. On the basis these findings, we present a model in which the ABCA1-mediated lipid transfer process occurs primarily at the membrane surface in macrophages, but still accounts for the observed specific internalization of apoA-I.
    Keywords ATP binding cassette transporter A-1 ; apolipoprotein A-I ; cell biology ; endocytosis ; macrophage ; confocal microscopy ; Biochemistry ; QD415-436
    Subject code 572
    Language English
    Publishing date 2008-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Metabolic control by S6 kinases depends on dietary lipids.

    Tamara R Castañeda / William Abplanalp / Sung Hee Um / Paul T Pfluger / Brigitte Schrott / Kimberly Brown / Erin Grant / Larissa Carnevalli / Stephen C Benoit / Donald A Morgan / Dean Gilham / David Y Hui / Kamal Rahmouni / George Thomas / Sara C Kozma / Deborah J Clegg / Matthias H Tschöp

    PLoS ONE, Vol 7, Iss 3, p e

    2012  Volume 32631

    Abstract: Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary ... ...

    Abstract Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top