LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 10

Search options

  1. Article ; Online: Complexity of the Immune Response Elicited by Different COVID-19 Vaccines, in the Light of Natural Autoantibodies and Immunomodulatory Therapies

    Katalin Böröcz / Ágnes Kinyó / Diana Simon / Szabina Erdő-Bonyár / Péter Németh / Timea Berki

    International Journal of Molecular Sciences, Vol 24, Iss 6439, p

    2023  Volume 6439

    Abstract: Despite the abundance of data on the COVID-19 vaccine-induced immune activation, the impact of natural autoantibodies (nAAbs) on these processes is less well defined. Therefore, we investigated potential connections between vaccine efficacy and nAAb ... ...

    Abstract Despite the abundance of data on the COVID-19 vaccine-induced immune activation, the impact of natural autoantibodies (nAAbs) on these processes is less well defined. Therefore, we investigated potential connections between vaccine efficacy and nAAb levels. We were also interested in the impact of immunomodulatory therapies on vaccine efficacy. Clinical residual samples were used for the assessment of the COVID-19 vaccine-elicited immune response (IR) (n=255), as well as for the investigation of the immunization-associated expansion of the nAAb pool (n=185). In order to study the potential interaction between immunomodulatory therapies and the vaccine-induced IR, untreated, healthy individuals and patients receiving anti-TNFα or anti-IL-17 therapies were compared (n total =45). In-house ELISAs (anticitrate synthase, anti-HSP60 and-70) and commercial ELISAs (anti-SARS-CoV-2 ELISAs IgG, IgA, NeutraLISA and IFN-γ release assay ‘IGRA’) were applied. We found significant differences in the IR given to different vaccines. Moreover, nAAb levels showed plasticity in response to anti-COVID-19 immunization. We conclude that our findings may support the theorem about the non-specific beneficial ‘side effects’ of vaccination, including the broadening of the nAAb repertoire. Considering immunomodulation, we suggest that anti-TNFα and anti-IL17 treatments may interfere negatively with MALT-associated IR, manifested as decreased IgA titers; however, the modest sample numbers of the herein presented model might be a limiting factor of reaching a more comprehensive conclusion.
    Keywords COVID-19 ; vaccine ; natural autoantibodies ; ELISA ; immunomodulation ; humoral ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Biomarker Associations in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage

    Dora Spantler / Tihamer Molnar / Diana Simon / Timea Berki / Andras Buki / Attila Schwarcz / Peter Csecsei

    International Journal of Molecular Sciences, Vol 23, Iss 8789, p

    2022  Volume 8789

    Abstract: The prognosis for patients with aneurysmal subarachnoid hemorrhage (aSAH) is heavily influenced by the development of delayed cerebral ischemia (DCI), but the adequate and effective therapy of DCI to this day has not been resolved. Multiplex serum ... ...

    Abstract The prognosis for patients with aneurysmal subarachnoid hemorrhage (aSAH) is heavily influenced by the development of delayed cerebral ischemia (DCI), but the adequate and effective therapy of DCI to this day has not been resolved. Multiplex serum biomarker studies may help to understand the pathophysiological processes underlying DCI. Samples were collected from patients with aSAH at two time points: (1) 24 h (Day 1) and (2) 5–7 days after ictus. Serum concentrations of eotaxin, FGF-2, FLT-3L, CX3CL1, Il-1b, IL-4, IP-10, MCP3, and MIP-1b were determined using a customized MILLIPLEX Human Cytokine/Chemokine/Growth Factor Panel A multiplex assay. The functional outcome was defined by the modified Rankin scale (favorable: 0–2, unfavorable: 3–6) measured on the 30th day after aSAH. One-hundred and twelve patients with aSAH were included in this study. The median level of CX3CL1 and MCP-3 measured on Days 5–7 were significantly higher in patients with DCI compared with those without DCI (CX3CL1: with DCI: 110.5 pg/mL, IQR: 82–201 vs. without DCI: 82.6, 58–119, p = 0.036; and MCP-3: with DCI: 22 pg/mL (0–32) vs. without DCI: 0 (0–11), p < 0.001). IP-10, MCP-3, and MIP-1b also showed significant associations with the functional outcome after aSAH. MCP-3 and CX3CL1 may play a role in the pathophysiology of DCI.
    Keywords aneurysmal subarachnoid hemorrhage ; delayed cerebral ischemia ; functional outcome ; MCP-3 ; CX3CL1 ; IP-10 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Natural and Pathological Autoantibodies Show Age-Related Changes in a Spontaneous Autoimmune Mouse (NZB) Model

    Szonja Gál / Erzsébet Gajdócsi / Esam Khanfar / Katalin Olasz / Diána Simon / Péter Balogh / Tímea Berki / Péter Németh / Ferenc Boldizsár

    International Journal of Molecular Sciences, Vol 24, Iss 9809, p

    2023  Volume 9809

    Abstract: The natural autoantibody (natAAb) network is thought to play a role in immune regulation. These IgM antibodies react with evolutionary conserved antigens; however, they do not lead to pathological tissue destruction as opposed to pathological ... ...

    Abstract The natural autoantibody (natAAb) network is thought to play a role in immune regulation. These IgM antibodies react with evolutionary conserved antigens; however, they do not lead to pathological tissue destruction as opposed to pathological autoantibodies (pathAAb). The exact relation between the natAAbs and pathAAbs is still not completely understood; therefore, in the present study, we set out to measure nat- and pathAAb levels against three conserved antigens in a spontaneous autoimmune disease model: the NZB mouse strain which develops autoimmune hemolytic anemia (AIHA) from six months of age. There was an age dependent increase in the natAAb levels in the serum against Hsp60, Hsp70, and the mitochondrial citrate synthase until 6–9 months of age, followed by a gradual decrease. The pathological autoantibodies appeared after six months of age, which corresponded with the appearance of the autoimmune disease. The changes in nat/pathAAb levels were coupled with decreasing B1- and increasing plasma cell and memory B cell percentages. Based on this, we propose that there is a switch from natAAbs towards pathAAbs in aged NZB mice.
    Keywords natural autoantibody ; pathological autoantibody ; autoimmune disease ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 630
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Ligation of TLR Homologue CD180 of B Cells Activates the PI3K/Akt/mTOR Pathway in Systemic Sclerosis and Induces a Pathological Shift in the Expression of BAFF Receptors

    Szabina Erdő-Bonyár / Judit Rapp / Dávid Szinger / Tünde Minier / Gábor Kumánovics / László Czirják / Timea Berki / Diána Simon

    International Journal of Molecular Sciences, Vol 23, Iss 6777, p

    2022  Volume 6777

    Abstract: The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) pathways are known to play a key role in B-cell activation and fibrosis in systemic sclerosis (SSc). Receptors of B-cell activator factor (BAFF) utilize these ... ...

    Abstract The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) pathways are known to play a key role in B-cell activation and fibrosis in systemic sclerosis (SSc). Receptors of B-cell activator factor (BAFF) utilize these pathways, which can be influenced by Toll-like receptors (TLRs), as TLRs can alter the expression of BAFF-binding receptors. Our results show that B-cell stimulation via TLR homologue CD180 phosphorylates Akt in diffuse cutaneous SSc (dcSSc) to a lower extent than in healthy controls (HCs). We found basal downregulated BAFF receptor (BAFF-R) and enhanced transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) expression in dcSSc B cells, which might enhance the formation of autoantibody-secreting plasma cells. Moreover, this pathological shift was observed in naive B cells, emphasizing the importance of their increase in SSc. Additionally, we measured higher serum levels of autoantibodies to BAFF in dcSSc patients, suggesting that an imbalance in the complex system of BAFF/anti-BAFF autoantibodies/BAFF-binding receptors may contribute to the development of SSc. Anti-CD180 antibody treatment had opposite effects on the expression of BAFF-R and TACI in HC B cells, resulting in similar levels as observed in SSc B cells without stimulation, which argues against the usefulness of such therapy in SSc.
    Keywords CD180 ; TLR ; B cells ; PI3K/Akt ; mTOR ; BAFF-R ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Following Natural Autoantibodies

    David Szinger / Timea Berki / Péter Németh / Szabina Erdo-Bonyar / Diana Simon / Ines Drenjančević / Senka Samardzic / Marija Zelić / Magdalena Sikora / Arlen Požgain / Katalin Böröcz

    International Journal of Molecular Sciences, Vol 24, Iss 14961, p

    Further Immunoserological Evidence Regarding Their Silent Plasticity and Engagement in Immune Activation

    2023  Volume 14961

    Abstract: Contradictory reports are available on vaccine-associated hyperstimulation of the immune system, provoking the formation of pathological autoantibodies. Despite being interconnected within the same network, the role of the quieter, yet important non- ... ...

    Abstract Contradictory reports are available on vaccine-associated hyperstimulation of the immune system, provoking the formation of pathological autoantibodies. Despite being interconnected within the same network, the role of the quieter, yet important non-pathological and natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological trigger, physiological nAAbs also exhibit a moderate plasticity. We investigated their inducibility through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR n = 1739 and anti-SARS-CoV-2 IgG n = 330) and nAAbs (anti-citrate synthase IgG, IgM n = 1739) were measured by in-house and commercial ELISAs using Croatian (Osijek) anonymous samples with documented vaccination backgrounds. The results were subsequently compared for statistical evaluation. Interestingly, the IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG seropositivity ( p < 0.001 in all cases), while IgG isotype nAAb levels were elevated in association with anti-SARS CoV-2 specific seropositivity ( p = 0.019) and in heterogeneous vaccine regimen recipients (unvaccinated controls vector/mRNA vaccines p = 0.002). Increasing evidence supports the interplay between immune activation and the dynamic expansion of nAAbs. Consequently, further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the immunological network.
    Keywords autoantibody ; natural autoantibody ; anti-viral antibody ; ELISA ; serology ; MMR ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 570
    Language English
    Publishing date 2023-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Human placenta-derived mesenchymal stem cells stimulate neuronal regeneration by promoting axon growth and restoring neuronal activity

    Elvira H. de Laorden / Diana Simón / Santiago Milla / María Portela-Lomba / Marian Mellén / Javier Sierra / Pedro de la Villa / María Teresa Moreno-Flores / Maite Iglesias

    Frontiers in Cell and Developmental Biology, Vol

    2023  Volume 11

    Abstract: In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, ... ...

    Abstract In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%–14% and axonal length per neuron rates of 19-26, μm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells ...
    Keywords mesenchymal stem cells ; neuroregeneration ; neurotrophic factors ; hypoxia ; electrophysiology ; Biology (General) ; QH301-705.5
    Subject code 571
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Different Kinetics of Serum ADAMTS13, GDF-15, and Neutrophil Gelatinase-Associated Lipocalin in the Early Phase of Aneurysmal Subarachnoid Hemorrhage

    Peter Csecsei / Csaba Olah / Reka Varnai / Diana Simon / Szabina Erdo-Bonyar / Timea Berki / Mate Czabajszki / Laszlo Zavori / Attila Schwarcz / Tihamer Molnar

    International Journal of Molecular Sciences, Vol 24, Iss 11005, p

    2023  Volume 11005

    Abstract: Growth differentiation factor 15 (GDF-15), neutrophil gelatinase-associated lipocalin (NGAL), and ADAMTS13 have previously been implicated in the pathophysiological processes of SAH. In the present study, we aim to examine their role in the early period ... ...

    Abstract Growth differentiation factor 15 (GDF-15), neutrophil gelatinase-associated lipocalin (NGAL), and ADAMTS13 have previously been implicated in the pathophysiological processes of SAH. In the present study, we aim to examine their role in the early period of SAH and their relationship to primary and secondary outcomes. Serum samples were collected at five time periods after SAH (at 24 h (D1), at 72 h (D3), at 120 h (D5), at 168 h (D7) and at 216 h (D9), post-admission) and) were measured by using MILLIPLEX Map Human Cardiovascular Disease (CVD) Magnetic Bead Panel 2. We included 150 patients with SAH and 30 healthy controls. GDF-15 levels at D1 to D9 were significantly associated with a 3-month unfavorable outcome. Based on the ROC analysis, in patients with a good clinical grade at admission (WFNS I-III), the GDF-15 value measured at time point D3 predicted a 3-month unfavorable outcome (cut-off value: 3.97 ng/mL, AUC:0.833, 95%CI: 0.728–0.938, sensitivity:73.7%, specificity:82.6%, p < 0.001). Univariate binary logistic regression analysis showed that serum NGAL levels at D1-D5 and ADAMTS13 levels at D7-D9 were associated with MVS following SAH. GDF-15 is an early indicator of a poor 3-month functional outcome even in patients with mild clinical conditions at admission.
    Keywords subarachnoid hemorrhage ; GDF-15 ; neutrophil gelatinase-associated lipocalin ; ADAMTS13 ; delayed cerebral ischemia ; macrovascular vasospasm ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Analysis of PI3K Pathway Associated Molecules Reveals Dysregulated Innate and Adaptive Functions of B Cells in Early Diffuse Cutaneous Systemic Sclerosis

    Diána Simon / Szabina Erdő-Bonyár / Judit Rapp / Péter Balogh / Tünde Minier / Gabriella Nagy / László Czirják / Tímea Berki

    International Journal of Molecular Sciences, Vol 22, Iss 2877, p

    2021  Volume 2877

    Abstract: B cell activation is an early event in the development of systemic sclerosis (SSc). The classical activation of B cells downstream of the B-cell receptor (BCR) involves the phosphatidylinositol-3 kinase (PI3K) pathway that integrates the effects of ... ...

    Abstract B cell activation is an early event in the development of systemic sclerosis (SSc). The classical activation of B cells downstream of the B-cell receptor (BCR) involves the phosphatidylinositol-3 kinase (PI3K) pathway that integrates the effects of multiple co-stimulatory receptors. Our analysis of PI3K pathway associated molecules in peripheral blood B cells of early diffuse cutaneous SSc (dcSSc) patients showed altered mRNA expression of Toll-like receptor (TLR) homolog CD180, TLR4, complement component 3, IL-4 receptor and secreted phosphoprotein 1 (SPP1). Parallel to this, we found elevated basal SPP1 secretion in dcSSc B cells, but, with BCR + IL-4 receptor co-stimulation, we could not induce further secretion. CD180 stimulation alone resulted in NF-κB activation in more B cells than CD180 + BCR co-stimulation both in dcSSc and healthy control (HC), but the co-engagement increased the phosphorylation of NF-κB only in dcSSc B cells. Additionally, in contrast with HC B cells, the lower basal production of IL-10 by dcSSc B cells could not be elevated with CD180 stimulation. Furthermore, activation via CD180 increased the percentage of CD86+ switched memory (CD27+IgD−) B cells in dcSSc compared to HC. Our results suggest that alternative B cell activation and CD180 dysfunction cause imbalance of regulatory mechanisms in dcSSc B cells.
    Keywords B cells ; systemic sclerosis ; dcSSc ; PI3K pathway ; CD180 ; SPP1 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Optimization of Lyophilized Hyperacute Serum (HAS) as a Regenerative Therapeutic in Osteoarthritis

    Isabel Olmos Calvo / Olga Kuten-Pella / Karina Kramer / Ágnes Madár / Szilvia Takács / Dorottya Kardos / Diána Simon / Szabina Erdö-Bonyár / Timea Berki / Andrea De Luna / Stefan Nehrer / Zsombor Lacza

    International Journal of Molecular Sciences, Vol 22, Iss 7496, p

    2021  Volume 7496

    Abstract: Hyperacute serum (HAS) is a blood derivative product that promotes the proliferation of various cell types and controls inflammation in vitro. The aim of this study is to investigate the regenerative potential of different formulations of HAS, including ... ...

    Abstract Hyperacute serum (HAS) is a blood derivative product that promotes the proliferation of various cell types and controls inflammation in vitro. The aim of this study is to investigate the regenerative potential of different formulations of HAS, including lyophilized and hyaluronic acid combined versions, to obtain a stable and standardized therapeutic in osteoarthritis (OA), which may be able to overcome the variability limitations of platelet-rich plasma (PRP). Primary human osteoarthritic chondrocytes were used for testing cellular viability and gene expression of OA-related genes. Moreover, a co-culture of human explants of cartilage, bone and synovium under inflammatory conditions was used for investigating the inflammatory control capacities of the different therapeutics. In this study, one formulation of lyophilized HAS achieved the high cell viability rates of liquid HAS and PRP. Gene expression analysis showed that HAS induced higher Col1a1 expression than PRP. Cytokine quantification from supernatant fluids revealed that HAS treatment of inflamed co-cultures significantly reduced levels of IL-5, IL-15, IL-2, TNFα, IL-7 and IL-12. To conclude, lyophilized HAS is a stable and standardized therapeutic with high potential in joint regeneration.
    Keywords hyperacute serum ; osteoarthritis ; joint regeneration ; explant co-culture ; blood derived product ; inflammatory cytokines ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: A Neuroregenerative Human Ensheathing Glia Cell Line with Conditional Rapid Growth

    Vega García-Escudero / Ricardo Gargini / María Teresa Gallego-Hernández / Ana García-Gómez / María Jesús Martín-Bermejo / Diana Simón / Alicia Delicado / María Teresa Moreno-Flores / Jesús Ávila / Filip Lim

    Cell Transplantation, Vol

    2011  Volume 20

    Abstract: Ensheathing glia have been demonstrated to have neuroregenerative properties but this cell type from human sources has not been extensively studied because tissue samples are not easily obtained, primary cultures are slow growing, and human cell lines ... ...

    Abstract Ensheathing glia have been demonstrated to have neuroregenerative properties but this cell type from human sources has not been extensively studied because tissue samples are not easily obtained, primary cultures are slow growing, and human cell lines are not available. We previously isolated immortalized ensheathing glia by gene transfer of BMI1 and telomerase catalytic subunit into primary cultures derived from olfactory bulbs of an elderly human cadaver donor. These cells escape the replicative senescence characteristic of primary human cells while conserving antigenic and neuroregenerative properties of ensheathing glia, but their low proliferative rate in culture complicates their utility as cell models and their application for preclinical cell therapy experiments. In this study we describe the use of a conditional SV40 T antigen (TAg) transgene to generate human ensheathing glia cell lines, which are easy to maintain due to their robust growth in culture. Although these fast growing clones exhibited polyploid karyotypes frequently observed in cells immortalized by TAg, they did not acquire a transformed phenotype, all of them maintaining neuroregenerative capacity and antigenic markers typical of ensheathing glia. These markers were also retained even after elimination of the TAg transgene using Cre/LoxP technology, although the cells died shortly after, confirming that their survival depended on the presence of the immortalizing genes. We have also demonstrated here the feasibility of using these human cell lines in animal models by genetically marking the cells with GFP and implanting them into the injured spinal cord of immunosuppressed rats. Our conditionally immortalized human ensheathing glia cell lines will thus serve as useful tools for advancing cell therapy approaches and understanding neuroregenerative mechanisms of this unique cell type.
    Keywords Medicine ; R
    Subject code 571
    Language English
    Publishing date 2011-03-01T00:00:00Z
    Publisher SAGE Publishing
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top