LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Coupled Anisotropic Magneto-Mechanical Material Model for Structured Magnetoactive Materials.

    Dohmen, Eike / Kraus, Benjamin

    Polymers

    2020  Volume 12, Issue 11

    Abstract: Adaptability of properties of magnetic materials such as magnetorheological (MR) fluids, MR elastomers (MRE), and other magneto-active (MA) materials drives scientific activities worldwide, trying to broaden the fields of application of such materials. ... ...

    Abstract Adaptability of properties of magnetic materials such as magnetorheological (MR) fluids, MR elastomers (MRE), and other magneto-active (MA) materials drives scientific activities worldwide, trying to broaden the fields of application of such materials. In our work, we focused on the utilization and implementation of existing material models to realize a praxis-oriented coupled anisotropic material model for the commercial finite element (FE) software ABAQUS taking into account magneto-mechanical interactions. By introducing this material model, a first step is done to predict and optimize the behavior of MA materials.
    Language English
    Publishing date 2020-11-16
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2527146-5
    ISSN 2073-4360 ; 2073-4360
    ISSN (online) 2073-4360
    ISSN 2073-4360
    DOI 10.3390/polym12112710
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: On anisotropic mechanical properties of heterogeneous magnetic polymeric composites.

    Borin, Dmitry / Stepanov, Gennady / Dohmen, Eike

    Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

    2019  Volume 377, Issue 2143, Page(s) 20180212

    Abstract: This study is devoted to the magneto-mechanical characterization of heterogeneous magnetoactive elastomers based on an elastic polydimethylsiloxane matrix with embedded spherical magnetic soft microparticles and magnetic hard microparticles of irregular ... ...

    Abstract This study is devoted to the magneto-mechanical characterization of heterogeneous magnetoactive elastomers based on an elastic polydimethylsiloxane matrix with embedded spherical magnetic soft microparticles and magnetic hard microparticles of irregular shape. An issue of the anisotropic mechanical properties of these smart composites is considered. Non-magnetized and pre-magnetized specimens are characterized using a planar shear and axial loading in an externally applied homogeneous magnetic field. The field direction differs relative to the direction of the field used for the specimens pre-magnetization. Results of the different methods allow comparison of the tensile shear moduli for the samples with an initially identical composition. Obtained results demonstrate a strong correlation between the composite behaviour and orientation of the magnetic field used for the pre-magnetization of the sample relative to the external field applied to a sample during the test. Composites pre-magnetized in the direction parallel to an applied mechanical force and external magnetic field show higher magnetorheological response than composites pre-magnetized transversally to the force and the field. Application of the external field directed opposite to the direction of the pre-magnetization reduces the observed stiffening. Moreover, in this situation a softening of the material can be observed, depending on the magnitude of the external field and the field used for pre-magnetization. This article is part of the theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.
    Language English
    Publishing date 2019-03-02
    Publishing country England
    Document type Journal Article
    ZDB-ID 208381-4
    ISSN 1471-2962 ; 0080-4614 ; 0264-3820 ; 0264-3952 ; 1364-503X
    ISSN (online) 1471-2962
    ISSN 0080-4614 ; 0264-3820 ; 0264-3952 ; 1364-503X
    DOI 10.1098/rsta.2018.0212
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Numerical Investigation of the Orientability of Single Reinforcement Fibers in Polymer Matrices.

    Winkler, Anja / Modler, Niels / Gude, Maik / Xu, Yun / Helwig, Martin / Dohmen, Eike / Dittes, Axel / Höhlich, Dominik / Lampke, Thomas

    Polymers

    2022  Volume 14, Issue 3

    Abstract: Fiber-reinforced polymers are increasingly being used, especially in lightweight structures. Here, the effective adaptation of mechanical or physical properties to the necessary application or manufacturing requirements plays an important role. In this ... ...

    Abstract Fiber-reinforced polymers are increasingly being used, especially in lightweight structures. Here, the effective adaptation of mechanical or physical properties to the necessary application or manufacturing requirements plays an important role. In this context, the alignment of reinforcing fibers is often hindered by manufacturing aspects. To achieve graded or locally adjusted alignment of different fiber lengths, common manufacturing technologies such as injection molding or compression molding need to be supported by the external non-mechanical process. Magnetic or electrostatic fields seem to be particularly suitable for this purpose. The present work shows a first simulation study of the alignment of magnetic particles in polymer matrices as a function of different parameters. The parameters studied are the viscosity of the surrounding polymer as a function of the focused processing methods, the fiber length, the thickness and permeability of the magnetic fiber coatings, and the magnetic flux density. The novelty of the presented works is in the development of an advanced simulation model that allows the simulative representation and reveal of the fluid-structure interaction, the influences of these parameters on the inducible magnetic torque and fiber alignment of a single fiber. Accordingly, the greatest influence on fiber alignment is caused by the magnetic flux density and the coating material.
    Language English
    Publishing date 2022-01-28
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2527146-5
    ISSN 2073-4360 ; 2073-4360
    ISSN (online) 2073-4360
    ISSN 2073-4360
    DOI 10.3390/polym14030534
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top