LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Untargeted Metabolite Profiling of Cerebrospinal Fluid Uncovers Biomarkers for Severity of Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2, Batten Disease)

Miriam Sindelar / Jonathan P. Dyke / Ruba S. Deeb / Dolan Sondhi / Stephen M. Kaminsky / Barry E. Kosofsky / Douglas J. Ballon / Ronald G. Crystal / Steven S. Gross

Scientific Reports, Vol 8, Iss 1, Pp 1-

2018  Volume 12

Abstract: Abstract Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a rare lysosomal storage disorder caused by a monogenetic deficiency of tripeptidyl peptidase-1 (TPP1). Despite knowledge that lipofuscin is the hallmark disease product, the ... ...

Abstract Abstract Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a rare lysosomal storage disorder caused by a monogenetic deficiency of tripeptidyl peptidase-1 (TPP1). Despite knowledge that lipofuscin is the hallmark disease product, the relevant TPP1 substrate and its role in neuronal physiology/pathology is unknown. We hypothesized that untargeted metabolite profiling of cerebrospinal fluid (CSF) could be used as an effective tool to identify disease-associated metabolic disruptions in CLN2 disease, offering the potential to identify biomarkers that inform on disease severity and progression. Accordingly, a mass spectrometry-based untargeted metabolite profiling approach was employed to differentiate CSF from normal vs. CLN2 deficient individuals. Of 1,433 metabolite features surveyed, 29 linearly correlated with currently employed disease severity scores. With tandem mass spectrometry 8 distinct metabolite identities were structurally confirmed based on retention time and fragmentation pattern matches, vs. standards. These putative CLN2 biomarkers include 7 acetylated species – all attenuated in CLN2 compared to controls. Because acetate is the major bioenergetic fuel for support of mitochondrial respiration, deficient acetylated species in CSF suggests a brain energy defect that may drive neurodegeneration. Targeted analysis of these metabolites in CSF of CLN2 patients offers a powerful new approach for monitoring CLN2 disease progression and response to therapy.
Keywords Medicine ; R ; Science ; Q
Subject code 610
Language English
Publishing date 2018-10-01T00:00:00Z
Publisher Nature Publishing Group
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top