LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 30

Search options

  1. Article ; Online: Secondary organic aerosol formation during June 2010 in Central Europe

    B. Langmann / K. Sellegri / E. Freney

    Atmospheric Chemistry and Physics, Vol 14, Iss 8, Pp 3831-

    measurements and modelling studies with a mixed thermodynamic-kinetic approach

    2014  Volume 3842

    Abstract: Until recently secondary organic carbon aerosol (SOA) mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours, more realistic model ... ...

    Abstract Until recently secondary organic carbon aerosol (SOA) mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours, more realistic model results for organic carbon aerosol mass concentrations can be achieved. Applying a mixed thermodynamic-kinetic approach for SOA formation shifted the aerosol size distribution towards particles in the cloud condensation nuclei size range, thereby emphasising the importance of SOA formation schemes for modelling realistic cloud and precipitation formation. The additional importance of hetero-molecular nucleation between H 2 SO 4 and organic vapours remains to be evaluated in three-dimensional atmospheric-chemistry-aerosol models. Here a case study is presented focusing on Puy-de-Dôme, France in June 2010. The measurements indicate a considerable increase in SOA mass concentration during the measurement campaign, which could be reproduced by modelling using a simplified thermodynamic-kinetic approach for SOA formation and increased biogenic volatile organic compound (VOC) precursor emissions. Comparison with a thermodynamic SOA formation approach shows a huge improvement in modelled SOA mass concentration with the thermodynamic-kinetic approach for SOA formation. SOA mass concentration increases by a factor of up to 6 accompanied by a slight improvement of modelled particle size distribution. Even though nucleation events at Puy-de-Dôme were rare during the chosen period of investigation, a weak event in the boundary layer could be reproduced by the model in a sensitivity study when nucleation of low-volatile secondary organic vapour is included. Differences in the model results with and without nucleation of organic vapour are visible in the lower free troposphere over several days. Taking into account the nucleation of organic vapour leads to an increase in accumulation mode particles due to coagulation and condensational growth of nucleation and Aitken mode ...
    Keywords Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 660
    Language English
    Publishing date 2014-04-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Secondary organic aerosol formation during June 2010 in Central Europe

    B. Langmann / K. Sellegri / E. Freney

    Atmospheric Chemistry and Physics Discussions, Vol 13, Iss 10, Pp 26761-

    measurements and modelling studies with a mixed thermodynamic-kinetic approach

    2013  Volume 26793

    Abstract: Until recently secondary organic carbon (SOC) aerosol mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours more realistic model ... ...

    Abstract Until recently secondary organic carbon (SOC) aerosol mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours more realistic model results for organic carbon aerosol mass concentrations could be achieved. Applying a mixed thermodynamic-kinetic approach for SOC aerosol formation shifted the aerosol size distribution towards particles in the cloud condensation nuclei size range, thereby emphasising the importance of SOC aerosol formation schemes for modelling realistic cloud and precipitation formation. The additional importance of hetero-molecular nucleation between H 2 SO 4 and organic vapours remains to be evaluated in three-dimensional atmospheric-chemistry-aerosol models. Here a case study is presented focusing on Puy-de-Dôme, France in June 2010. Even though nucleation events at Puy-de-Dôme were rare during the chosen period of investigation a weak event in the boundary layer could be reproduced by the model when nucleation of low-volatile secondary organic vapour is included. Differences in the model results with and without nucleation of organic vapour are visible in the lower free troposphere over several days of the period. Taking into account nucleation of organic vapour leads to an increase in accumulation mode particles due to coagulation of nucleation and aitken mode particles. Moreover, the measurements indicate a considerable increase in SOC aerosol mass concentration during the measurement campaign, which could be reproduced by modelling using a simplified thermodynamic-kinetic approach for SOC aerosol formation and increased biogenic VOC precursor emissions. Comparison with a thermodynamic SOC aerosol formation approach shows a huge improvement in modelled SOC aerosol mass concentration with the thermodynamic-kinetic approach for SOC aerosol formation and a slight improvement of modelled particle size distribution.
    Keywords Environmental sciences ; GE1-350 ; Geography. Anthropology. Recreation ; G ; DOAJ:Environmental Sciences ; DOAJ:Earth and Environmental Sciences
    Subject code 660
    Language English
    Publishing date 2013-10-01T00:00:00Z
    Publisher Copernicus GmbH
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Hygroscopic properties and mixing state of aerosol measured at the high altitude site Puy de Dôme (1465 m a.s.l.), France

    H. Holmgren / K. Sellegri / M. Hervo / C. Rose / E. Freney / P. Villani / P. Laj

    Atmospheric Chemistry and Physics Discussions, Vol 14, Iss 5, Pp 6759-

    2014  Volume 6802

    Abstract: A Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France from September 2008 to December 2012. This high-altitude ... ...

    Abstract A Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France from September 2008 to December 2012. This high-altitude site is ideally situated to allow for both the upper part of the planetary boundary layer and the lower free troposphere to be sampled. The aim of the study is to investigate both the influence of year-to-year, seasonal, and diurnal cycles, as well as the influence of air mass type on particle hygroscopicity and mixing state. Results show that particle hygroscopicity increases with particle size and depends both on air mass type and on season. Average growth factor values are lowest in winter (1.21 ± 0.13, 1.23 ± 0.18 and 1.38 ± 0.25 for 25, 50 and 165 nm particles, respectively) and highest in autumn (1.27 ± 0.11, 1.32 ± 0.12 and 1.49 ± 0.15 for 25, 50 and 165 nm particles, respectively). Particles are generally more hygroscopic at night than during the day. The seasonal and diurnal variations are likely to be strongly influenced by boundary layer dynamics. Furthermore, particles originating from oceanic and continental regions tend to be more hygroscopic than those measured in African and local air masses. The high hygroscopicity of marine aerosol may be explained by large proportions of inorganic aerosol and sea salts, and it is speculated that continental particles are more hygroscopic than local and African ones due to ageing of fresh combustion aerosol. Aerosol measured at the Puy de Dôme display a high degree of external mixing, and hygroscopic growth spectra can be divided into three different hygroscopic modes: a less hygroscopic mode (GF < 1.3), a hygroscopic mode (GF 1.3–1.7) and a more hygroscopic mode (GF > 1.7). The majority of particles measured can be classified as being in either the less hygroscopic mode or the hygroscopic mode, and only few of them have more hygroscopic properties. The degree of external mixing, evaluated as the fraction of time when the aerosol is found with two or more populations with different hygroscopic properties, is found to increase with particle size (average yearly values are 22, 33 and 49% for 25, 50, and 165 nm particles, respectively). The degree of external mixing is more sensitive to season than to air mass type, and it is higher in the cold seasons than in the warm seasons. This study gathers the results from one of the longest data sets of hygroscopic growth factor measurements to date, allowing a statistically relevant hygroscopic growth parameterization to be determined as a function of both air mass type and season.
    Keywords Environmental sciences ; GE1-350 ; Geography. Anthropology. Recreation ; G ; DOAJ:Environmental Sciences ; DOAJ:Earth and Environmental Sciences
    Subject code 551
    Language English
    Publishing date 2014-03-01T00:00:00Z
    Publisher Copernicus GmbH
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France

    H. Holmgren / K. Sellegri / M. Hervo / C. Rose / E. Freney / P. Villani / P. Laj

    Atmospheric Chemistry and Physics, Vol 14, Iss 18, Pp 9537-

    2014  Volume 9554

    Abstract: A Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France, periodically from September 2008 to January 2010, and ... ...

    Abstract A Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France, periodically from September 2008 to January 2010, and almost continuously from October 2010 to December 2012. This high-altitude site is ideally situated to allow for both the upper part of the planetary boundary layer and the lower free troposphere to be sampled. The aim of the study is to investigate both the influence of year-to-year, seasonal and diurnal cycles, as well as the influence of air mass type on particle hygroscopicity and mixing state. Results show that particle hygroscopicity increases with particle size and depends both on air mass type and on season. Average growth factor values, GFs, are lowest in winter (1.21 ± 0.13, 1.23 ± 0.18 and 1.38 ± 0.25 for 25, 50 and 165 nm particles, respectively) and highest in autumn (1.27 ± 0.11, 1.32 ± 0.12 and 1.49 ± 0.15 for 25, 50 and 165 nm particles, respectively). Particles are generally more hygroscopic at night than during the day. The seasonal and diurnal variations are likely to be strongly influenced by boundary layer dynamics. Furthermore, particles originating from oceanic and continental regions tend to be more hygroscopic than those measured in African and local air masses. The high hygroscopicity of oceanic aerosol can be explained by large proportions of inorganic aerosol and sea salts. Aerosols measured at the Puy de Dôme display a high degree of external mixing, and hygroscopic growth spectra can be divided into three different hygroscopic modes: a less-hygroscopic mode (GF < 1.3), a hygroscopic mode (GF~1.3–1.7) and a more-hygroscopic mode (GF > 1.7). The majority of particles measured can be classified as being in either the less-hygroscopic mode or the hygroscopic mode, and only few of them have more-hygroscopic properties. The degree of external mixing, evaluated as the fraction of time when the aerosol is found with two or more aerosol ...
    Keywords Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 551
    Language English
    Publishing date 2014-09-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry

    E. Freney / K. Sellegri / A. Nicosia / L. R. Williams / M. Rinaldi / J. T. Trueblood / A. S. H. Prévôt / M. Thyssen / G. Grégori / N. Haëntjens / J. Dinasquet / I. Obernosterer / F. Van Wambeke / A. Engel / B. Zäncker / K. Desboeufs / E. Asmi / H. Timonen / C. Guieu

    Atmospheric Chemistry and Physics, Vol 21, Pp 10625-

    2021  Volume 10641

    Abstract: The organic mass fraction from sea spray aerosol (SSA) is currently a subject of intense research. The majority of this research is dedicated to measurements in ambient air. However a number of studies have recently started to focus on nascent sea spray ... ...

    Abstract The organic mass fraction from sea spray aerosol (SSA) is currently a subject of intense research. The majority of this research is dedicated to measurements in ambient air. However a number of studies have recently started to focus on nascent sea spray aerosol. This work presents measurements collected during a 5-week cruise in May and June 2017 in the central and western Mediterranean Sea, an oligotrophic marine region with low phytoplankton biomass. Surface seawater was continuously pumped into a bubble-bursting apparatus to generate nascent sea spray aerosol. Size distributions were measured with a differential mobility particle sizer (DMPS). Chemical characterization of the submicron aerosol was performed with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) operating with 10 min time resolution and with filter-based chemical analysis on a daily basis. Using positive matrix factorization analysis, the ToF-ACSM non-refractory organic matter (OM NR ) was separated into four different organic aerosol types, identified as primary OA (POA NR ), oxidized OA (OOA NR ), methanesulfonic acid type OA (MSA-OA NR ), and mixed OA (MOA NR ). In parallel, surface seawater biogeochemical properties were monitored providing information on phytoplankton cell abundance and seawater particulate organic carbon (1 h time resolution) and seawater surface microlayer (SML) dissolved organic carbon (DOC) (on a daily basis). Statistically robust correlations (for n >500 ) were found between MOA NR and nanophytoplankton cell abundance, as well as between POA NR , OOA NR , and particulate organic carbon (POC). Parameterizations of the contributions of different types of organics to the submicron nascent sea spray aerosol are proposed as a function of the seawater biogeochemical properties for use in models.
    Keywords Physics ; QC1-999 ; Chemistry ; QD1-999
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Aerosol sources in the western Mediterranean during summertime

    M. Chrit / K. Sartelet / J. Sciare / J. Pey / J. B. Nicolas / N. Marchand / E. Freney / K. Sellegri / M. Beekmann / F. Dulac

    Atmospheric Chemistry and Physics, Vol 18, Pp 9631-

    a model-based approach

    2018  Volume 9659

    Abstract: In the framework of ChArMEx (the Chemistry-Aerosol Mediterranean Experiment), the air quality model Polyphemus is used to understand the sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the ... ...

    Abstract In the framework of ChArMEx (the Chemistry-Aerosol Mediterranean Experiment), the air quality model Polyphemus is used to understand the sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters (meteorological fields, anthropogenic and sea-salt emissions and hypotheses related to the model representation of condensation/evaporation). The model is evaluated by comparisons to in situ aerosol measurements performed during three consecutive summers (2012, 2013 and 2014). The model-to-measurement comparisons concern the concentrations of PM 10 , PM 1 , organic matter in PM 1 (OM 1 ) and inorganic aerosol concentrations monitored at a remote site (Ersa) on Corsica Island, as well as airborne measurements performed above the western Mediterranean Sea. Organic particles are mostly from biogenic origin. The model parameterization of sea-salt emissions has been shown to strongly influence the concentrations of all particulate species (PM 10 , PM 1 , OM 1 and inorganic concentrations). Although the emission of organic matter by the sea has been shown to be low, organic concentrations are influenced by sea-salt emissions; this is owing to the fact that they provide a mass onto which gaseous hydrophilic organic compounds can condense. PM 10 , PM 1 , OM 1 are also very sensitive to meteorology, which affects not only the transport of pollutants but also natural emissions (biogenic and sea salt). To avoid large and unrealistic sea-salt concentrations, a parameterization with an adequate wind speed power law is chosen. Sulfate is shown to be strongly influenced by anthropogenic (ship) emissions. PM 10 , PM 1 , OM 1 and sulfate concentrations are better described using the emission inventory with the best spatial description of ship emissions (EDGAR-HTAP). However, this is not true for nitrate, ammonium and chloride concentrations, which are very dependent on the hypotheses used in the model regarding condensation/evaporation. Model simulations show ...
    Keywords Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 290
    Language English
    Publishing date 2018-07-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France

    E. Asmi / E. Freney / M. Hervo / D. Picard / C. Rose / A. Colomb / K. Sellegri

    Atmospheric Chemistry and Physics Discussions, Vol 12, Iss 9, Pp 23039-

    2012  Volume 23091

    Abstract: Cloud condensation nuclei (CCN) size distributions and numbers were measured for the first time at Puy-de-Dôme high altitude (1465 m a.s.l) site in Central France. Majority of the measurements were done at constant supersaturation (SS) of 0.24%, which ... ...

    Abstract Cloud condensation nuclei (CCN) size distributions and numbers were measured for the first time at Puy-de-Dôme high altitude (1465 m a.s.l) site in Central France. Majority of the measurements were done at constant supersaturation (SS) of 0.24%, which was also deduced to be representative of the typical in-cloud SS at the site. CCN numbers during summer ranged from about 200 up to 2000 cm −3 and during winter from 50 up to 3000 cm −3 . Variability of CCN number was explained by both particle chemistry and size distribution variability. The higher CCN concentrations were measured in continental, in contrast to marine, air masses. Aerosol CCN activity was described with a single hygroscopicity parameter κ. Range of this parameter was 0.29 ± 0.13 in summer and 0.43 ± 0.19 in winter. When calculated using SS of 0.51% during summer, κ of 0.22 ± 0.07 was obtained. The decrease with increasing SS is likely explained by the particle size dependent chemistry with smaller particles containing higher amounts of freshly emitted organic species. Higher κ values during winter were for the most part explained by the observed aged organics (analysed from organic m/z 44 ratio) rather than from aerosol organic to inorganic volume fraction. The obtained κ values also fit well within the range of previously proposed global continental κ of 0.27 ± 0.21. During winter, the smallest κ values and the highest organic fractions were measured in marine air masses. CCN closure using bulk AMS chemistry led to positive bias of 5% and 2% in winter and summer, respectively. This is suspected to stem from size dependent aerosol organic fraction, which is underestimated by using AMS bulk mass composition. Finally, the results were combined with size distributions measured from interstitial and whole air inlets to obtain activated droplet size distributions. Cloud droplet number concentrations were shown to increase with accumulation mode particle number, while the real in-cloud SS correspondingly decreased. These results provide evidence on the effects of aerosol particles on maximum cloud supersaturations. Further work with detailed characterisation of cloud properties is proposed in order to provide more quantitative estimates on aerosol effects on clouds.
    Keywords Environmental sciences ; GE1-350 ; Geography. Anthropology. Recreation ; G ; DOAJ:Environmental Sciences ; DOAJ:Earth and Environmental Sciences ; Geophysics. Cosmic physics ; QC801-809
    Subject code 333
    Language English
    Publishing date 2012-09-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France

    E. Asmi / E. Freney / M. Hervo / D. Picard / C. Rose / A. Colomb / K. Sellegri

    Atmospheric Chemistry and Physics, Vol 12, Iss 23, Pp 11589-

    2012  Volume 11607

    Abstract: Cloud condensation nuclei (CCN) size distributions and numbers were measured for the first time at Puy-de-Dôme high altitude (1465 m a.s.l) site in Central France. Majority of the measurements were done at constant supersaturation (SS) of 0.24%, which ... ...

    Abstract Cloud condensation nuclei (CCN) size distributions and numbers were measured for the first time at Puy-de-Dôme high altitude (1465 m a.s.l) site in Central France. Majority of the measurements were done at constant supersaturation (SS) of 0.24%, which was also deduced to be representative of the typical in-cloud SS at the site. CCN numbers during summer ranged from about 200 up to 2000 cm −3 and during winter from 50 up to 3000 cm −3 . Variability of CCN number was explained by both particle chemistry and size distribution variability. The higher CCN concentrations were measured in continental, in contrast to marine, air masses. Aerosol CCN activity was described with a single hygroscopicity parameter κ. Range of this parameter was 0.29 ± 0.13 in summer and 0.43 ± 0.19 in winter. When calculated using SS of 0.51% during summer, κ of 0.22 ± 0.07 was obtained. The decrease with increasing SS is likely explained by the particle size dependent chemistry with smaller particles containing higher amounts of freshly emitted organic species. Higher κ values during winter were for the most part explained by the observed aged organics (analysed from organic m/z 44 ratio) rather than from aerosol organic to inorganic volume fraction. The obtained κ values also fit well within the range of previously proposed global continental κ of 0.27 ± 0.21. During winter, the smallest κ values and the highest organic fractions were measured in marine air masses. CCN closure using bulk AMS chemistry led to positive bias of 5% and 2% in winter and summer, respectively. This is suspected to stem from size dependent aerosol organic fraction, which is underestimated by using AMS bulk mass composition. Finally, the results were combined with size distributions measured from interstitial and whole air inlets to obtain activated droplet size distributions. Cloud droplet number concentrations were shown to increase with accumulation mode particle number, while the real in-cloud SS correspondingly decreased. These results provide evidence on the ...
    Keywords Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 333
    Language English
    Publishing date 2012-12-01T00:00:00Z
    Publisher Copernicus Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes

    Andrii Slonchak / Leon E. Hugo / Morgan E. Freney / Sonja Hall-Mendelin / Alberto A. Amarilla / Francisco J. Torres / Yin Xiang Setoh / Nias Y. G. Peng / Julian D. J. Sng / Roy A. Hall / Andrew F. van den Hurk / Gregor J. Devine / Alexander A. Khromykh

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: The function on subgenomic flaviviral RNA (sfRNA) in the mosquito vector is not well understood. Here, Slonchak et al. show that sfRNA affects virus-induced apoptosis and dissemination of ZIKV in Aedes aegypti mosquitoes, suggesting a role of sfRNA in ... ...

    Abstract The function on subgenomic flaviviral RNA (sfRNA) in the mosquito vector is not well understood. Here, Slonchak et al. show that sfRNA affects virus-induced apoptosis and dissemination of ZIKV in Aedes aegypti mosquitoes, suggesting a role of sfRNA in Zika virus replication and transmission.
    Keywords Science ; Q
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes

    Andrii Slonchak / Leon E. Hugo / Morgan E. Freney / Sonja Hall-Mendelin / Alberto A. Amarilla / Francisco J. Torres / Yin Xiang Setoh / Nias Y. G. Peng / Julian D. J. Sng / Roy A. Hall / Andrew F. van den Hurk / Gregor J. Devine / Alexander A. Khromykh

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: The function on subgenomic flaviviral RNA (sfRNA) in the mosquito vector is not well understood. Here, Slonchak et al. show that sfRNA affects virus-induced apoptosis and dissemination of ZIKV in Aedes aegypti mosquitoes, suggesting a role of sfRNA in ... ...

    Abstract The function on subgenomic flaviviral RNA (sfRNA) in the mosquito vector is not well understood. Here, Slonchak et al. show that sfRNA affects virus-induced apoptosis and dissemination of ZIKV in Aedes aegypti mosquitoes, suggesting a role of sfRNA in Zika virus replication and transmission.
    Keywords Science ; Q
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top