LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model

    Ehsan Harirchian / Tom Lahmer

    Applied Sciences, Vol 10, Iss 7, p

    2020  Volume 2375

    Abstract: Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and ... ...

    Abstract Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bingöl and Düzce earthquakes in Turkey.
    Keywords fuzzy logic system ; earthquake safety assessment ; seismic vulnerability assessment ; Interval Type-2 Fuzzy logic ; rapid visual screening ; reinforced concrete buildings ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 720
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A Hybrid ANN-GA Model for an Automated Rapid Vulnerability Assessment of Existing RC Buildings

    Mehmet Akif Bülbül / Ehsan Harirchian / Mehmet Fatih Işık / Seyed Ehsan Aghakouchaki Hosseini / Ercan Işık

    Applied Sciences, Vol 12, Iss 5138, p

    2022  Volume 5138

    Abstract: Determining the risk priorities for the building stock in highly seismic-prone regions and making the final decisions about the buildings is one of the essential precautionary measures that needs to be taken before the earthquake. This study aims to ... ...

    Abstract Determining the risk priorities for the building stock in highly seismic-prone regions and making the final decisions about the buildings is one of the essential precautionary measures that needs to be taken before the earthquake. This study aims to develop an Artificial Neural Network (ANN)-based model to predict risk priorities for reinforced-concrete (RC) buildings that constitute a large part of the existing building stock. For this purpose, the network parameters in the network structure have been optimized by establishing a hybrid structure with the Genetic Algorithm (GA). As a result, the ANN model can make accurate predictions with maximum efficiency. The suggested ANN model is a feedforward back-propagation network model. It aims to predict the risk priorities for 329 RC buildings in the most successful way, for which the performance score was calculated using the Turkey Rapid Evaluation Method (2013). In this paper, a GA-ANN hybrid model was implemented in which the ANN, using the most successful gene revealed by the model, produced successful results in calculating the performance score. In addition, the required input parameters for obtaining more efficient results in solving such a problem and the parameters that need to be used in establishing such an ANN network structure have been optimized. With the help of such a model, the operation process will be eliminated. The created hybrid model was 98% successful in determining the risk priority in RC buildings.
    Keywords existing reinforced-concrete buildings ; rapid visual screening ; ANN ; genetic algorithm ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings

    Mehmet Fatih Işık / Fatih Avcil / Ehsan Harirchian / Mehmet Akif Bülbül / Marijana Hadzima-Nyarko / Ercan Işık / Rabia İzol / Dorin Radu

    Sustainability, Vol 15, Iss 9715, p

    2023  Volume 9715

    Abstract: The realistic determination of damage estimation and building performance depends on target displacements in performance-based earthquake engineering. In this study, target displacements were obtained by performing pushover analysis for a sample ... ...

    Abstract The realistic determination of damage estimation and building performance depends on target displacements in performance-based earthquake engineering. In this study, target displacements were obtained by performing pushover analysis for a sample reinforced-concrete building model, taking into account 60 different peak ground accelerations for each of the five different stories. Three different target displacements were obtained for damage estimation, such as damage limitation (DL), significant damage (SD), and near collapse (NC), obtained for each peak ground acceleration for five different numbers of stories, respectively. It aims to develop an artificial neural network (ANN)-based sustainable model to predict target displacements under different seismic risks for mid-rise regular reinforced-concrete buildings, which make up a large part of the existing building stock, using all the data obtained. For this purpose, a hybrid structure was established with the particle swarm optimization algorithm (PSO), and the network structure’s hyper parameters were optimized. Three different hybrid models were created in order to predict the target displacements most successfully. It was found that the ANN established with particles with the best position revealed by the hybrid models produced successful results in the calculation of the performance score. The created hybrid models produced 99% successful results in DL estimation, 99% in SD estimation, and 99% in NC estimation in determining target displacements in mid-rise regular reinforced-concrete buildings. The hybrid model also revealed which parameters should be used in ANN for estimating target displacements under different seismic risks.
    Keywords mid-rise ; regular RC building ; target displacement ; ANN ; optimization algorithm ; Environmental effects of industries and plants ; TD194-195 ; Renewable energy sources ; TJ807-830 ; Environmental sciences ; GE1-350
    Subject code 620
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings

    Ehsan Harirchian / Vandana Kumari / Kirti Jadhav / Shahla Rasulzade / Tom Lahmer / Rohan Raj Das

    Applied Sciences, Vol 11, Iss 7540, p

    2021  Volume 7540

    Abstract: A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of ... ...

    Abstract A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings.
    Keywords building safety assessment ; artificial neural networks ; machine learning ; supervised learning ; damaged buildings ; rapid classification ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 621
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures

    Ehsan Harirchian / Kirti Jadhav / Kifaytullah Mohammad / Seyed Ehsan Aghakouchaki Hosseini / Tom Lahmer

    Applied Sciences, Vol 10, Iss 6411, p

    2020  Volume 6411

    Abstract: Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas ... ...

    Abstract Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared.
    Keywords damaged buildings ; earthquake safety assessment ; soft computing techniques ; rapid visual screening ; seismic risk estimation ; Multi-criteria decision making ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 690
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters

    Ercan Işık / Aydın Büyüksaraç / Yunus Levent Ekinci / Mehmet Cihan Aydın / Ehsan Harirchian

    Applied Sciences, Vol 10, Iss 7247, p

    A Case Study from the Marmara Region (NW Turkey)

    2020  Volume 7247

    Abstract: The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen ...

    Abstract The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2%, 10%, 50%, and 68% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province’s design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.
    Keywords site-specific spectrum ; Marmara Region ; seismic hazard analysis ; adaptive pushover ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 720
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings

    Ehsan Harirchian / Vandana Kumari / Kirti Jadhav / Rohan Raj Das / Shahla Rasulzade / Tom Lahmer

    Applied Sciences, Vol 10, Iss 7153, p

    2020  Volume 7153

    Abstract: Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the ... ...

    Abstract Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure’s performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building’s behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings.
    Keywords damaged buildings ; earthquake safety assessment ; soft computing techniques ; rapid visual screening ; Machine Learning ; vulnerability assessment ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 621
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: A Comparative Study of the Effects of Earthquakes in Different Countries on Target Displacement in Mid-Rise Regular RC Structures

    Ercan Işık / Marijana Hadzima-Nyarko / Hüseyin Bilgin / Naida Ademović / Aydın Büyüksaraç / Ehsan Harirchian / Borko Bulajić / Hayri Baytan Özmen / Seyed Ehsan Aghakouchaki Hosseini

    Applied Sciences, Vol 12, Iss 12495, p

    2022  Volume 12495

    Abstract: Data from past earthquakes is an important tool to reveal the impact of future earthquakes on engineering structures, especially in earthquake-prone regions. These data are important indicators for revealing the seismic loading effects that structures ... ...

    Abstract Data from past earthquakes is an important tool to reveal the impact of future earthquakes on engineering structures, especially in earthquake-prone regions. These data are important indicators for revealing the seismic loading effects that structures will be exposed to in future earthquakes. Five different earthquakes from six countries with high seismic risk were selected and were within the scope of this study. The measured peak ground acceleration (PGA) for each earthquake was compared with the suggested PGA for the respective region. Structural analyzes were performed for a reinforced-concrete (RC) building model with four different variables, including the number of storeys, local soil types, building importance class and concrete class. Target displacements specified in the Eurocode-8 were obtained for both the suggested and measured PGA values for each earthquake. The main goal of this study is to reveal whether the proposed and measured PGA values are adequately represented in different countries. We tried to reveal whether the seismic risk was taken into account at a sufficient level. In addition, target displacements have been obtained separately in order to demonstrate whether the measured and suggested PGA values for these countries are adequately represented in structural analysis and evaluations. It was concluded that both seismic risk and target displacements were adequately represented for some earthquakes, while not adequately represented for others. Comments were made about the existing building stock of the countries considering the obtained results.
    Keywords target displacement ; earthquake ; peak ground acceleration ; reinforced-concrete ; pushover ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Language English
    Publishing date 2022-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top