LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Defective insulin-stimulated GLUT4 translocation in brown adipocytes induces systemic glucose homeostasis dysregulation independent of thermogenesis in female mice

    Belén Picatoste / Lucie Yammine / Rosemary A. Leahey / David Soares / Emma F. Johnson / Paul Cohen / Timothy E. McGraw

    Molecular Metabolism, Vol 53, Iss , Pp 101305- (2021)

    2021  

    Abstract: Objective: Recent studies indicate that brown adipose tissue, in addition to its role in thermogenesis, has a role in the regulation of whole-body metabolism. Here we characterize the metabolic effects of deleting Rab10, a protein key for insulin ... ...

    Abstract Objective: Recent studies indicate that brown adipose tissue, in addition to its role in thermogenesis, has a role in the regulation of whole-body metabolism. Here we characterize the metabolic effects of deleting Rab10, a protein key for insulin stimulation of glucose uptake into white adipocytes, solely from brown adipocytes. Methods: We used a murine brown adipocyte cell line and stromal vascular fraction-derived in vitro differentiated brown adipocytes to study the role of Rab10 in insulin-stimulated GLUT4 translocation to the plasma membrane and insulin-stimulated glucose uptake. We generated a brown adipocyte-specific Rab10 knockout for in vivo studies of metabolism and thermoregulation. Results: We demonstrate that deletion of Rab10 from brown adipocytes results in a two-fold reduction of insulin-stimulated glucose transport by reducing translocation of the GLUT4 glucose transporter to the plasma membrane, an effect linked to whole-body glucose intolerance and insulin resistance in female mice. This effect on metabolism is independent of the thermogenic function of brown adipocytes, thereby revealing a metabolism-specific role for brown adipocytes in female mice. The reduced glucose uptake induced by Rab10 deletion disrupts ChREBP regulation of de novo lipogenesis (DNL) genes, providing a potential link between DNL in brown adipocytes and whole-body metabolic regulation in female mice. However, deletion of Rab10 from male mice does not induce systemic insulin resistance, although ChREBP regulation is disrupted. Conclusions: Our studies of Rab10 reveal the role of insulin-regulated glucose transport into brown adipocytes in whole-body metabolic homeostasis of female mice. Importantly, the contribution of brown adipocytes to whole-body metabolic regulation is independent of its role in thermogenesis. It is unclear whether the whole-body metabolic sexual dimorphism is because female mice are permissive to the effects of Rab10 deletion from brown adipocytes or because male mice are resistant to the effect.
    Keywords Brown adipose tissue ; Rab10 ; GLUT4 ; Glucose homeostasis ; Diabetes ; Internal medicine ; RC31-1245
    Subject code 570
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Spatiotemporal regulation of GIPR signaling impacts glucose homeostasis as revealed in studies of a common GIPR variant

    Lucie Yammine / Belén Picatoste / Nazish Abdullah / Rosemary A. Leahey / Emma F. Johnson / Nicolás Gómez-Banoy / Carolina Rosselot / Jennifer Wen / Tahmina Hossain / Marcus D. Goncalves / James C. Lo / Adolfo Garcia-Ocaña / Timothy E. McGraw

    Molecular Metabolism, Vol 78, Iss , Pp 101831- (2023)

    2023  

    Abstract: Objective: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 ...

    Abstract Objective: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). Methods: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a β−cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. Results: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in β-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). Conclusions: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of ...
    Keywords GIPR ; Incretin ; Glucose metabolism ; Diabetes ; Receptor trafficking ; Pancreatic islets ; Internal medicine ; RC31-1245
    Subject code 570
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top