LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 12

Search options

  1. Article ; Online: Phylogenomic early warning signals for SARS-CoV-2 epidemic wavesResearch in context

    Kieran O. Drake / Olivia Boyd / Vinicius B. Franceschi / Rachel M. Colquhoun / Nicholas A.F. Ellaby / Erik M. Volz

    EBioMedicine, Vol 100, Iss , Pp 104939- (2024)

    2024  

    Abstract: Summary: Background: Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of growing genomic ... ...

    Abstract Summary: Background: Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of growing genomic variants can therefore serve as a predictor of future waves, enabling timely implementation of countermeasures such as non-pharmaceutical interventions (social distancing), additional vaccination (booster campaigns), or healthcare capacity adjustments. The large amount of SARS-CoV-2 genomic sequence data produced during the pandemic has provided a unique opportunity to explore the utility of these data for generating early warning signals (EWS). Methods: We developed an analytical pipeline (Transmission Fitness Polymorphism Scanner – designated in an R package mrc-ide/tfpscanner) for systematically exploring all clades within a SARS-CoV-2 virus phylogeny to detect variants showing unusually high growth rates. We investigated the use of these cluster growth rates as the basis for a variety of statistical time series to use as leading indicators for the epidemic waves in the UK during the pandemic between August 2020 and March 2022. We also compared the performance of these phylogeny-derived leading indicators with a range of non-phylogeny-derived leading indicators. Our experiments simulated data generation and real-time analysis. Findings: Using phylogenomic analysis, we identified leading indicators that would have generated EWS ahead of significant increases in COVID-19 hospitalisations in the UK between August 2020 and March 2022. Our results also show that EWS lead time is sensitive to the threshold set for the number of false positive (FP) EWS. It is often possible to generate longer EWS lead times if more FP EWS are tolerated. On the basis of maximising lead time and minimising the number of FP EWS, the best performing leading indicators that we identified, amongst a set of 1.4 million, were the maximum logistic growth rate (LGR) amongst clusters of the dominant ...
    Keywords SARS-CoV-2 ; COVID-19 ; Early warning signal ; Leading indicator ; Surveillance ; Phylogenetics ; Medicine ; R ; Medicine (General) ; R5-920
    Subject code 551
    Language English
    Publishing date 2024-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Bayesian phylodynamic inference with complex models.

    Erik M Volz / Igor Siveroni

    PLoS Computational Biology, Vol 14, Iss 11, p e

    2018  Volume 1006546

    Abstract: Population genetic modeling can enhance Bayesian phylogenetic inference by providing a realistic prior on the distribution of branch lengths and times of common ancestry. The parameters of a population genetic model may also have intrinsic importance, ... ...

    Abstract Population genetic modeling can enhance Bayesian phylogenetic inference by providing a realistic prior on the distribution of branch lengths and times of common ancestry. The parameters of a population genetic model may also have intrinsic importance, and simultaneous estimation of a phylogeny and model parameters has enabled phylodynamic inference of population growth rates, reproduction numbers, and effective population size through time. Phylodynamic inference based on pathogen genetic sequence data has emerged as useful supplement to epidemic surveillance, however commonly-used mechanistic models that are typically fitted to non-genetic surveillance data are rarely fitted to pathogen genetic data due to a dearth of software tools, and the theory required to conduct such inference has been developed only recently. We present a framework for coalescent-based phylogenetic and phylodynamic inference which enables highly-flexible modeling of demographic and epidemiological processes. This approach builds upon previous structured coalescent approaches and includes enhancements for computational speed, accuracy, and stability. A flexible markup language is described for translating parametric demographic or epidemiological models into a structured coalescent model enabling simultaneous estimation of demographic or epidemiological parameters and time-scaled phylogenies. We demonstrate the utility of these approaches by fitting compartmental epidemiological models to Ebola virus and Influenza A virus sequence data, demonstrating how important features of these epidemics, such as the reproduction number and epidemic curves, can be gleaned from genetic data. These approaches are provided as an open-source package PhyDyn for the BEAST2 phylogenetics platform.
    Keywords Biology (General) ; QH301-705.5
    Subject code 310
    Language English
    Publishing date 2018-11-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Applications of predictive modelling early in the COVID-19 epidemic

    Chiara Poletto / Samuel V Scarpino / Erik M Volz

    The Lancet: Digital Health, Vol 2, Iss 10, Pp e498-e

    2020  Volume 499

    Keywords Computer applications to medicine. Medical informatics ; R858-859.7
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Phylodynamic inference for structured epidemiological models.

    David A Rasmussen / Erik M Volz / Katia Koelle

    PLoS Computational Biology, Vol 10, Iss 4, p e

    2014  Volume 1003570

    Abstract: Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly ... ...

    Abstract Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based inference methods being applied to populations with rapidly changing population dynamics, including pathogens like RNA viruses. However, fitting epidemiological models to genealogies via coalescent models remains a challenging task, because pathogen populations often exhibit complex, nonlinear dynamics and are structured by multiple factors. Moreover, it often becomes necessary to consider stochastic variation in population dynamics when fitting such complex models to real data. Using recently developed structured coalescent models that accommodate complex population dynamics and population structure, we develop a statistical framework for fitting stochastic epidemiological models to genealogies. By combining particle filtering methods with Bayesian Markov chain Monte Carlo methods, we are able to fit a wide class of stochastic, nonlinear epidemiological models with different forms of population structure to genealogies. We demonstrate our framework using two structured epidemiological models: a model with disease progression between multiple stages of infection and a two-population model reflecting spatial structure. We apply the multi-stage model to HIV genealogies and show that the proposed method can be used to estimate the stage-specific transmission rates and prevalence of HIV. Finally, using the two-population model we explore how much information about population structure is contained in genealogies and what sample sizes are necessary to reliably infer parameters like migration rates.
    Keywords Biology (General) ; QH301-705.5
    Subject code 310
    Language English
    Publishing date 2014-04-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Viral phylodynamics.

    Erik M Volz / Katia Koelle / Trevor Bedford

    PLoS Computational Biology, Vol 9, Iss 3, p e

    2013  Volume 1002947

    Abstract: Viral phylodynamics is defined as the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viralphylogenies. Since the coining of the term in 2004, research on viral phylodynamics has focused on ... ...

    Abstract Viral phylodynamics is defined as the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viralphylogenies. Since the coining of the term in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation. Transmission dynamics can be considered at the level of cells within an infected host, individual hosts within a population, or entire populations of hosts. Many viruses, especially RNA viruses, rapidly accumulate genetic variation because of short generation times and high mutation rates. Patterns of viral genetic variation are therefore heavily influenced by how quickly transmission occurs and by which entities transmit to one another. Patterns of viral genetic variation will also be affected by selection acting on viral phenotypes. Although viruses can differ with respect to many phenotypes, phylodynamic studies have to date tended to focus on a limited number of viral phenotypes. These include virulence phenotypes, phenotypes associated with viral transmissibility, cell or tissue tropism phenotypes, and antigenic phenotypes that can facilitate escape from host immunity. Due to the impact that transmission dynamics and selection can have on viral genetic variation, viral phylogenies can therefore be used to investigate important epidemiological, immunological, and evolutionary processes, such as epidemic spread[2], spatio-temporal dynamics including metapopulation dynamics[3], zoonotic transmission, tissue tropism[4], and antigenic drift[5]. The quantitative investigation of these processes through the consideration of viral phylogenies is the central aim of viral phylodynamics.
    Keywords Biology (General) ; QH301-705.5
    Subject code 572
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Inferring the source of transmission with phylogenetic data.

    Erik M Volz / Simon D W Frost

    PLoS Computational Biology, Vol 9, Iss 12, p e

    2013  Volume 1003397

    Abstract: Identifying the source of transmission using pathogen genetic data is complicated by numerous biological, immunological, and behavioral factors. A large source of error arises when there is incomplete or sparse sampling of cases. Unsampled cases may act ... ...

    Abstract Identifying the source of transmission using pathogen genetic data is complicated by numerous biological, immunological, and behavioral factors. A large source of error arises when there is incomplete or sparse sampling of cases. Unsampled cases may act as either a common source of infection or as an intermediary in a transmission chain for hosts infected with genetically similar pathogens. It is difficult to quantify the probability of common source or intermediate transmission events, which has made it difficult to develop statistical tests to either confirm or deny putative transmission pairs with genetic data. We present a method to incorporate additional information about an infectious disease epidemic, such as incidence and prevalence of infection over time, to inform estimates of the probability that one sampled host is the direct source of infection of another host in a pathogen gene genealogy. These methods enable forensic applications, such as source-case attribution, for infectious disease epidemics with incomplete sampling, which is usually the case for high-morbidity community-acquired pathogens like HIV, Influenza and Dengue virus. These methods also enable epidemiological applications such as the identification of factors that increase the risk of transmission. We demonstrate these methods in the context of the HIV epidemic in Detroit, Michigan, and we evaluate the suitability of current sequence databases for forensic and epidemiological investigations. We find that currently available sequences collected for drug resistance testing of HIV are unlikely to be useful in most forensic investigations, but are useful for identifying transmission risk factors.
    Keywords Biology (General) ; QH301-705.5
    Subject code 310
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Incorporating disease and population structure into models of SIR disease in contact networks.

    Joel C Miller / Erik M Volz

    PLoS ONE, Vol 8, Iss 8, p e

    2013  Volume 69162

    Abstract: We consider the recently introduced edge-based compartmental models (EBCM) for the spread of susceptible-infected-recovered (SIR) diseases in networks. These models differ from standard infectious disease models by focusing on the status of a random ... ...

    Abstract We consider the recently introduced edge-based compartmental models (EBCM) for the spread of susceptible-infected-recovered (SIR) diseases in networks. These models differ from standard infectious disease models by focusing on the status of a random partner in the population, rather than a random individual. This change in focus leads to simple analytic models for the spread of SIR diseases in random networks with heterogeneous degree. In this paper we extend this approach to handle deviations of the disease or population from the simplistic assumptions of earlier work. We allow the population to have structure due to effects such as demographic features or multiple types of risk behavior. We allow the disease to have more complicated natural history. Although we introduce these modifications in the static network context, it is straightforward to incorporate them into dynamic network models. We also consider serosorting, which requires using dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is straightforward to introduce many other generalizations not considered here. Our goal is twofold: to provide a number of examples generalizing the EBCM method for various different population or disease structures and to provide insight into how to derive such a model under new sets of assumptions.
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.

    Erik M Volz / Joel C Miller / Alison Galvani / Lauren Ancel Meyers

    PLoS Computational Biology, Vol 7, Iss 6, p e

    2011  Volume 1002042

    Abstract: The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching ... ...

    Abstract The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.
    Keywords Biology (General) ; QH301-705.5
    Subject code 612
    Language English
    Publishing date 2011-06-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Correction

    Erik M. Volz / Joel C. Miller / Alison Galvani / Lauren Ancel Meyers

    PLoS Computational Biology, Vol 7, Iss

    Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics.

    2011  Volume 7

    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2011-07-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: HIV-1 transmission during early infection in men who have sex with men

    Erik M Volz / Edward Ionides / Ethan O Romero-Severson / Mary-Grace Brandt / Eve Mokotoff / James S Koopman

    PLoS Medicine, Vol 10, Iss 12, p e1001568; discussion e

    a phylodynamic analysis.

    2013  Volume 1001568

    Abstract: Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of ...

    Abstract Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. We conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates by stage of infection.We analyzed 662 HIV-1 subtype B sequences collected between October 14, 2004, and February 24, 2012, from MSM in the Detroit metropolitan area, Michigan. These sequences were cross-referenced with a database of 30,200 patients diagnosed with HIV infection in the state of Michigan, which includes clinical information that is informative about the recency of infection at the time of diagnosis. These data were analyzed using recently developed population genetic methods that have enabled the estimation of transmission rates from the population-level genetic diversity of the virus. We found that genetic data are highly informative about HIV donors in ways that standard surveillance data are not. Genetic data are especially informative about the stage of infection of donors at the point of transmission. We estimate that 44.7% (95% CI, 42.2%-46.4%) of transmissions occur during the first year of infection.In this study, almost half of transmissions occurred within the first year of HIV infection in MSM. Our conclusions may be sensitive to un-modeled intra-host evolutionary dynamics, un-modeled sexual risk behavior, and uncertainty in the stage of infected hosts at the time of sampling. The intensity of transmission during early infection may have significance for public health interventions based on early treatment ...
    Keywords Medicine ; R
    Subject code 310
    Language English
    Publishing date 2013-12-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top