LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article: Co-delivery of 5-fluorouracil and oxaliplatin in novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly(lactic-co-glycolic acid) nanoparticles for colon cancer therapy

    Handali, Somayeh / Eskandar Moghimipour / Mohsen Rezaei / Sadegh Saremy / Farid Abedin Dorkoosh

    International journal of biological macromolecules. 2019 Mar. 01, v. 124

    2019  

    Abstract: In the present study, a novel 5FU and OXA co-loaded PHBV/PLGA NPs was developed which induced apoptosis in cancer cells. NPs were prepared by the double emulsion method and their preparation was optimized using D-optimal design of response surface ... ...

    Abstract In the present study, a novel 5FU and OXA co-loaded PHBV/PLGA NPs was developed which induced apoptosis in cancer cells. NPs were prepared by the double emulsion method and their preparation was optimized using D-optimal design of response surface methodology (RSM). 5FU-OXA loaded NPs were evaluated by SEM, DSC and DLS. NPs were spherical as shown by SEM and the results of DSC indicated that both drugs successfully entrapped into NPs. 5FU-OXA loaded NPs exhibited higher cytotoxicity effect than free drugs on cancer cells. For the first time to our knowledge, these results showed that more ROS generation and stronger activation of the ROS-dependent apoptotic pathway were induced by 5FU and OXA delivered by NPs. Furthermore, it was observed that NPs were hemocompatible. Co-loaded NPs exhibited significantly higher antitumor efficiency compared to free drugs combination, indicating this co-delivery system provides great potential in cancer therapy. The results of present study also confirmed that PHBV/PLGA NPs can be served as a promising platform for the co-delivery of antitumor drugs and present a new view for treatment of cancer with reducing side effect of drugs.
    Keywords apoptosis ; colorectal neoplasms ; cytotoxicity ; differential scanning calorimetry ; emulsions ; fluorouracil ; nanoparticles ; neoplasm cells ; response surface methodology ; scanning electron microscopy ; therapeutics
    Language English
    Dates of publication 2019-0301
    Size p. 1299-1311.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 282732-3
    ISSN 1879-0003 ; 0141-8130
    ISSN (online) 1879-0003
    ISSN 0141-8130
    DOI 10.1016/j.ijbiomac.2018.09.119
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  2. Article ; Online: Design of Nanoparticles Loaded Acyclovir for Controlled Delivery System

    Shadab Shahsavari / Farid Abedin Dorkoosh / Ebrahim Vasheghani Farahani / Mehdi Arjmand

    Knowledge & Health Journal, Vol 9, Iss 4, Pp 60-

    2015  Volume 67

    Abstract: Introduction: The aim of this research was to develop a new drug release systems based on Nanoparticles. In this study, the natural polymer chitosan was used for preparation of nanoparticles due to its unique properties, such as biocompatibility and ... ...

    Abstract Introduction: The aim of this research was to develop a new drug release systems based on Nanoparticles. In this study, the natural polymer chitosan was used for preparation of nanoparticles due to its unique properties, such as biocompatibility and biodegradability. Methods: The polymeric nano-drug controlled release system has been designed with experimental design D-optimal response surface methodology, for varied variables such as the concentration of acyclovir, concentration ratio of chitosan/ TPP and pH using the ionic gelation method. The nanoparticles were characterized morphologically by scanning electron microcopy (SEM), particle size analyser (DLS) for determining size, zeta and PdI, Fourier Transform Infra-Red (FTIR) Spectroscopy for determination of structure of nanoparticlesand thermo gravimetric analysis (TGA)for studying thermal behavior. The optimized nanoparticles were characterized. Results: The size of the particles was detected to be 132±24.3 nm; zeta potential was 32±2.87 mV; PdI of particles was 0.159±0.05; and calculated EE% was 85±4.38%. An in-vitro release study of the prepared nanoparticles illustrated that the percentage of acyclovir released from the nanoparticles was 80.17±2.45% within 48 hrs. Conclusion: The optimized nanoparticles according to SEM image, exhibited segregated and non-aggregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of acyclovir nanoparticles at temperature up to 200°C due to TGA analysis, which indicated a well-established structure of nanoparticles.
    Keywords Acyclovir ; Chitosan nanoparticles ; Controlled release system ; D-optimal response surface experimental design methodology ; Ionic gelation ; Medicine ; R ; Public aspects of medicine ; RA1-1270
    Subject code 620 ; 500
    Publishing date 2015-10-01T00:00:00Z
    Publisher Shahroud University of Medical Sciences
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article: Transferrin targeted liposomal 5-fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells

    Moghimipour, Eskandar / Farid Abedin Dorkoosh / Kambiz Ahmadi Angali / Maryam Kouchak / Mohsen Amini / Mohsen Rezaei / Somayeh Handali / Zahra Ramezani

    Life sciences. 2018 Feb. 01, v. 194

    2018  

    Abstract: The purpose of this study was to prepare transferrin (Tf) targeted liposomal 5-Fluorouracil (5FU) to improve the safety and efficacy of the drug. Liposomes were prepared using thin layer method. Morphology of liposomes was characterized by transmission ... ...

    Abstract The purpose of this study was to prepare transferrin (Tf) targeted liposomal 5-Fluorouracil (5FU) to improve the safety and efficacy of the drug. Liposomes were prepared using thin layer method. Morphology of liposomes was characterized by transmission electron microscopy (TEM) and their particle size was also determined. The in vitro cytotoxicity was investigated via MTT assay on HT-29 (as cancer cell) and fibroblast (as normal cell). Moreover, cytotoxicity mechanism of targeted liposomes was determined through the production of reactive oxygen species (ROS), mitochondrial membrane potential (∆Ψm) and release of cytochrome c. Results showed that encapsulation efficiency (EE%) was 58.66±0.58 and average size of liposomes was 107nm. Also, nano-particles were spherical as shown by TEM. MTT assay on HT-29 cells revealed the higher cytotoxic activity of targeted liposomes in comparison to free drug and non-targeted liposome. In contrast, comparing with cancer cells, targeted liposomes had no cytotoxic effect on normal cells. In addition, targeted liposomes induced apoptosis through activation of mitochondrial apoptosis pathways, as evidenced by decreased mitochondrial membrane potential and release of cytochrome c. Results of the study indicated that targeted liposomes would provide a potential strategy to treat colon cancer by inducing apoptosis via mitochondria signaling pathway with reducing dose of the drug and resulting fewer side-effects.
    Keywords adverse effects ; apoptosis ; colorectal neoplasms ; cytotoxicity ; encapsulation ; fibroblasts ; fluorouracil ; membrane potential ; mitochondria ; mitochondrial membrane ; nanoparticles ; neoplasm cells ; particle size ; signal transduction ; transferrin ; transmission electron microscopy
    Language English
    Dates of publication 2018-0201
    Size p. 104-110.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 3378-9
    ISSN 1879-0631 ; 0024-3205
    ISSN (online) 1879-0631
    ISSN 0024-3205
    DOI 10.1016/j.lfs.2017.12.026
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  4. Article ; Online: Design and development of intraocular polymeric implant systems for long-term controlled-release of clindamycin phosphate for toxoplasmic retinochoroiditis

    Lana Tamaddon / S Abolfazl Mostafavi / Reza Karkhane / Mohammad Riazi-Esfahani / Farid Abedin Dorkoosh / Morteza Rafiee-Tehrani

    Advanced Biomedical Research, Vol 4, Iss 1, Pp 32-

    2015  Volume 32

    Abstract: Background: The release of the anti-toxoplasmosis drug, clindamycin phosphate, from intraocular implants of the biodegradable polymers poly (D, L-lactic acid) (PLA) and poly (D, L-lactide-co-glycolide) (PLGA) has been studied in vitro. Materials and ... ...

    Abstract Background: The release of the anti-toxoplasmosis drug, clindamycin phosphate, from intraocular implants of the biodegradable polymers poly (D, L-lactic acid) (PLA) and poly (D, L-lactide-co-glycolide) (PLGA) has been studied in vitro. Materials and Methods: The preparation of the implants was performed by a melt-extrusion method. The developed extrudates were characterized and compared in in-vitro release profiles for elucidating the drug release mechanism. The formulations containing up to 40% w/w of drug were prepared. Release data in phosphate buffer (pH 7.4) were analyzed by high performance liquid chromatography. The release kinetics were fitted to the zero-order, Higuchi′s square-root, first order and the Korsmeyer-Peppas empirical equations for the estimation of various parameters of the drug release curves. Degradation of implants was also investigated morphologically with time (Scanning Electron Microscopy). Results: It was observed that, the release profiles for the formulations exhibit a typical biphasic profile for bulk-eroding systems, characterized by a first phase of burst release (in first 24 hrs), followed by a phase of slower release. The duration of the secondary phase was found to be proportional to the molecular weight and monomer ratio of copolymers and also polymer-to-drug ratios. It was confirmed that Higuchi and first-order kinetics were the predominant release mechanisms than zero order kinetic. The Korsmeyer-Peppas exponent (n) ranged between 0.10 and 0.96. This value, confirmed fickian as the dominant mechanism for PLA formulations (n ≤ 0.45) and the anomalous mechanism, for PLGAs (0.45 < n < 0.90). Conclusion: The implant of PLA (I.V. 0.2) containing 20% w/w of clindamycin, was identified as the optimum formulation in providing continuous efficient in-vitro release of clindamycin for about 5 weeks.
    Keywords Clindamycin phosphate ; intraocular implant ; PLA ; PLGA ; Medicine ; R ; Biology (General) ; QH301-705.5
    Subject code 660
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Wolters Kluwer Medknow Publications
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top