LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 15

Search options

  1. Article ; Online: Renin–Angiotensin System

    Jaroslav Hrenak / Fedor Simko

    International Journal of Molecular Sciences, Vol 21, Iss 8038, p

    An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome

    2020  Volume 8038

    Abstract: Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary ... ...

    Abstract Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg 9 -bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
    Keywords ARDS ; renin–angiotensin system ; ACE2 ; COVID-19 ; SARS-CoV-2 ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Renin–Angiotensin–Aldosterone System

    Fedor Simko / Jaroslav Hrenak / Michaela Adamcova / Ludovit Paulis

    International Journal of Molecular Sciences, Vol 22, Iss 3217, p

    Friend or Foe—The Matter of Balance. Insight on History, Therapeutic Implications and COVID-19 Interactions

    2021  Volume 3217

    Abstract: The renin–angiotensin–aldosterone system (RAAS) ranks among the most challenging puzzles in cardiovascular medicine [.] ...

    Abstract The renin–angiotensin–aldosterone system (RAAS) ranks among the most challenging puzzles in cardiovascular medicine [.]
    Keywords n/a ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The Impact of microRNAs in Renin–Angiotensin-System-Induced Cardiac Remodelling

    Michaela Adamcova / Ippei Kawano / Fedor Simko

    International Journal of Molecular Sciences, Vol 22, Iss 4762, p

    2021  Volume 4762

    Abstract: Current knowledge on the renin–angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone ... ...

    Abstract Current knowledge on the renin–angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets
    Keywords miRNA ; RAS ; cardiac remodelling ; cardiac fibrosis ; cardiac hypertrophy ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats

    Fedor Simko / Tomas Baka / Peter Stanko / Kristina Repova / Kristina Krajcirovicova / Silvia Aziriova / Oliver Domenig / Stefan Zorad / Michaela Adamcova / Ludovit Paulis

    Biomedicines, Vol 10, Iss 8, p

    Different Interactions with the Renin–Angiotensin–Aldosterone System

    2022  Volume 1844

    Abstract: This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether ...

    Abstract This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
    Keywords SHR ; sacubitril/valsartan ; ARNI ; ivabradine ; remodelling ; cardiac dysfunction ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2022-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: The effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats treated with the ACE2 inhibitor MLN-4760

    Sona Cacanyiova / Martina Cebova / Fedor Simko / Tomas Baka / Iveta Bernatova / Michal Kluknavsky / Stefan Zorad / Katarina Krskova / Ezgi Shaman / Anna Zemancikova / Andrej Barta / Basak G. Aydemir / Andrea Berenyiova

    Biological Research, Vol 56, Iss 1, Pp 1-

    2023  Volume 23

    Abstract: Abstract Background Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane ... ...

    Abstract Abstract Background Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a H2S-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet. Therefore, the aim of the study was to determine the effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats, an animal model of human essential hypertension and heart failure, under conditions of ACE2 inhibition induced by the administration of the specific inhibitor MLN-4760 (MLN). Results Zofenopril reduced MLN-increased visceral fat to body weight ratio although no changes in systolic blood pressure were recorded. Zofenopril administration resulted in a favorable increase in left ventricle ejection fraction and improvement of diastolic function regardless of ACE2 inhibition, which was associated with increased H2S levels in plasma and heart tissue. Similarly, the acute hypotensive responses induced by acetylcholine, L-NAME (NOsynthase inhibitor) and captopril (ACEI) were comparable after zofenopril administration independently from ACE2 inhibition. Although simultaneous treatment with zofenopril and MLN led to increased thoracic aorta vasorelaxation, zofenopril increased the NO component equally regardless of MLN treatment, which was associated with increased NO-synthase activity in aorta and left ventricle. Moreover, unlike in control rats, the endogenous H2S participated in maintaining of aortic endothelial function in MLN-treated rats and the treatment with zofenopril had no impact on this effect. Conclusions Zofenopril treatment reduced MLN-induced ...
    Keywords Essential Hypertension ; ACE2 inhibitor ; Zofenopril ; SARS-CoV-2 ; Cardiac function ; Vasoactivity ; Hydrogen sulfide ; Biology (General) ; QH301-705.5
    Subject code 616 ; 610
    Language English
    Publishing date 2023-10-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Angiotensin A/Alamandine/MrgD Axis

    Jaroslav Hrenak / Ludovit Paulis / Fedor Simko

    International Journal of Molecular Sciences, Vol 17, Iss 7, p

    Another Clue to Understanding Cardiovascular Pathophysiology

    2016  Volume 1098

    Abstract: The renin-angiotensin system (RAS) plays a crucial role in cardiovascular regulations and its modulation is a challenging target for the vast majority of cardioprotective strategies. However, many biological effects of these drugs cannot be explained by ... ...

    Abstract The renin-angiotensin system (RAS) plays a crucial role in cardiovascular regulations and its modulation is a challenging target for the vast majority of cardioprotective strategies. However, many biological effects of these drugs cannot be explained by the known mode of action. Our comprehension of the RAS is thus far from complete. The RAS represents an ingenious system of “checks and balances”. It incorporates vasoconstrictive, pro-proliferative, and pro-inflammatory compounds on one hand and molecules with opposing action on the other hand. The list of these molecules is still not definitive because new biological properties can be achieved by minor alteration of the molecular structure. The angiotensin A/alamandine-MrgD cascade associates the deleterious and protective branches of the RAS. Its identification provided a novel clue to the understanding of the RAS. Angiotensin A (Ang A) is positioned at the “crossroad” in this system since it either elicits direct vasoconstrictive and pro-proliferative actions or it is further metabolized to alamandine, triggering opposing effects. Alamandine, the central molecule of this cascade, can be generated both from the “deleterious” Ang A as well as from the “protective” angiotensin 1–7. This pathway modulates peripheral and central blood pressure regulation and cardiovascular remodeling. Further research will elucidate its interactions in cardiovascular pathophysiology and its possible therapeutic implications.
    Keywords angiotensin A ; alamandine ; MrgD receptor ; renin-angiotensin system ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2016-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Early Treatment of Acute Myocardial Infarction with Melatonin

    Alberto Domínguez-Rodríguez / Daniel Hernández-Vaquero / Pedro Abreu-González / Néstor Báez-Ferrer / Rocío Díaz / Pablo Avanzas / Fedor Simko / Virginia Domínguez-González / Ramaswamy Sharma / Russel J. Reiter

    Journal of Clinical Medicine, Vol 11, Iss 1909, p

    Effects on MMP-9 and Adverse Cardiac Events

    2022  Volume 1909

    Abstract: Background: Matrix metalloproteinase-9 (MMP-9) is crucial in tissue remodeling after an adverse cardiac event. In experimental studies, melatonin has been found to attenuate MMP-9 activation. The present study assessed the effects of systemic melatonin ... ...

    Abstract Background: Matrix metalloproteinase-9 (MMP-9) is crucial in tissue remodeling after an adverse cardiac event. In experimental studies, melatonin has been found to attenuate MMP-9 activation. The present study assessed the effects of systemic melatonin administration on the prognosis of patients with acute myocardial infarction (AMI) successfully treated with primary percutaneous coronary intervention, and to examine the effects on MMP-9 levels. Methods: We conducted a randomized controlled trial, enrolling patients who underwent primary percutaneous coronary intervention due to AMI. They were assigned to two groups for melatonin or placebo. The primary endpoint was a combined event of mortality and heart failure readmission at 2 years. The secondary endpoint was the levels of MMP-9 after the percutaneous coronary intervention. Results: Ninety-four patients were enrolled, 45 in the melatonin group and 49 in the control group. At 2 years of follow-up, 13 (13.8%) patients suffered the primary endpoint (3 deaths and 10 readmissions due to heart failure), 3 patients in the melatonin group and 10 in the placebo group. The difference in the restricted mean survival time was 87.5 days ( p = 0.02); HR = 0.3 (95% CI 0.08–1.08; p = 0.06); Log-rank test 0.04. After controlling for confounding variables, melatonin administration reduced MMP-9 levels to 90 ng/mL (95% CI 77.3–102.6). Conclusions: This pilot study demonstrated that compared to placebo, melatonin administration was associated with better outcomes in AMI patients undergoing primary percutaneous coronary intervention.
    Keywords melatonin ; acute myocardial infarction ; primary percutaneous coronary intervention ; major cardiovascular events ; MMP-9 ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension

    Peter Stanko / Tomas Baka / Kristina Repova / Silvia Aziriova / Kristina Krajcirovicova / Andrej Barta / Pavol Janega / Michaela Adamcova / Ludovit Paulis / Fedor Simko

    Frontiers in Medicine, Vol

    2020  Volume 7

    Abstract: Hypertension-induced renal injury is characterized by structural kidney alterations and function deterioration. Therapeutics for kidney protection are limited, thus novel renoprotectives in hypertension are being continuously sought out. Ivabradine, an ... ...

    Abstract Hypertension-induced renal injury is characterized by structural kidney alterations and function deterioration. Therapeutics for kidney protection are limited, thus novel renoprotectives in hypertension are being continuously sought out. Ivabradine, an inhibitor of the If current in the sinoatrial node reducing heart rate (HR), was shown to be of benefit in various cardiovascular pathologies. Yet, data regarding potential renoprotection by ivabradine in hypertension are sparse. Thirty-six adult male Wistar rats were divided into non-diseased controls and rats with NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension to assess ivabradine's site-specific effect on kidney fibrosis. After 4 weeks of treatment, L-NAME increased the average systolic blood pressure (SBP) (by 27%), decreased glomerular density (by 28%) and increased glomerular tuft area (by 44%). Moreover, L-NAME induced glomerular, tubulointerstitial, and vascular/perivascular fibrosis by enhancing type I collagen volume (16-, 19- and 25-fold, respectively). L-NAME also increased the glomerular type IV collagen volume and the tubular injury score (3- and 8-fold, respectively). Ivabradine decreased average SBP and HR (by 8 and 12%, respectively), increased glomerular density (by 57%) and reduced glomerular tuft area (by 30%). Importantly, ivabradine decreased type I collagen volume at all three of the investigated sites (by 33, 38, and 72%, respectively) and enhanced vascular/perivascular type III collagen volume (by 67%). Furthermore, ivabradine decreased the glomerular type IV collagen volume and the tubular injury score (by 63 and 34%, respectively). We conclude that ivabradine attenuated the alterations of glomerular density and tuft area and modified renal fibrosis in a site-specific manner in L-NAME-hypertension. It is suggested that ivabradine may be renoprotective in hypertensive kidney disease.
    Keywords ivabradine ; L-NAME ; hypertension ; fibrosis ; nephroprotection ; Medicine (General) ; R5-920
    Subject code 616
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Peripheral and Central Effects of Melatonin on Blood Pressure Regulation

    Olga Pechanova / Ludovit Paulis / Fedor Simko

    International Journal of Molecular Sciences, Vol 15, Iss 10, Pp 17920-

    2014  Volume 17937

    Abstract: The pineal hormone, melatonin (N-acetyl-5-methoxytryptamine), shows potent receptor-dependent and -independent actions, which participate in blood pressure regulation. The antihypertensive effect of melatonin was demonstrated in experimental and clinical ...

    Abstract The pineal hormone, melatonin (N-acetyl-5-methoxytryptamine), shows potent receptor-dependent and -independent actions, which participate in blood pressure regulation. The antihypertensive effect of melatonin was demonstrated in experimental and clinical hypertension. Receptor-dependent effects are mediated predominantly through MT1 and MT2 G-protein coupled receptors. The pleiotropic receptor-independent effects of melatonin with a possible impact on blood pressure involve the reactive oxygen species (ROS) scavenging nature, activation and over-expression of several antioxidant enzymes or their protection from oxidative damage and the ability to increase the efficiency of the mitochondrial electron transport chain. Besides the interaction with the vascular system, this indolamine may exert part of its antihypertensive action through its interaction with the central nervous system (CNS). The imbalance between the sympathetic and parasympathetic vegetative system is an important pathophysiological disorder and therapeutic target in hypertension. Melatonin is protective in CNS on several different levels: It reduces free radical burden, improves endothelial dysfunction, reduces inflammation and shifts the balance between the sympathetic and parasympathetic system in favor of the parasympathetic system. The increased level of serum melatonin observed in some types of hypertension may be a counter-regulatory adaptive mechanism against the sympathetic overstimulation. Since melatonin acts favorably on different levels of hypertension, including organ protection and with minimal side effects, it could become regularly involved in the struggle against this widespread cardiovascular pathology.
    Keywords melatonin ; hypertension ; central nervous system (CNS) ; MT1 and MT2 receptors ; reactive oxygen species (ROS) ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2014-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: The effects of body weight loss and gain on arterial hypertension control

    Peter Sabaka / Andrej Dukat / Jan Gajdosik / Matej Bendzala / Martin Caprnda / Fedor Simko

    European Journal of Medical Research, Vol 22, Iss 1, Pp 1-

    an observational prospective study

    2017  Volume 7

    Abstract: Abstract Background Body weight changes are associated with significant variations in blood pressure (BP). Body mass modifications may, therefore, influence hypertension control in primary care. Methods Patients with a history of essential arterial ... ...

    Abstract Abstract Background Body weight changes are associated with significant variations in blood pressure (BP). Body mass modifications may, therefore, influence hypertension control in primary care. Methods Patients with a history of essential arterial hypertension were observed for 12 months. Anthropometric data and clinical BP were evaluated at the time of the recruitment and after 12 months of follow-up. The association between (body mass index) BMI change and BP control was analyzed by logistic regression. Results Sixteen thousand five hundred and sixty-four patients were recruited, while 13,631 patients (6336 men; 7295 women) finished the 1-year follow-up. In obese patients, a BMI decrease by at least 1 kg/m2 was negatively associated with uncontrolled hypertension at the end of the follow-up (men p < 0.0001, OR = 0.586, 0.481–0.713, women p < 0.001, OR = 0.732, 0.611–0.876). A similar association was observed in overweight patients (men p < 0.05, OR = 0. 804, 95% CI: 0.636–0.997, women p < 0.05, OR = 0.730, 95% CI: 0.568–0.937). A BMI increase of at least 1 kg/m2 was associated with a significantly higher odd of uncontrolled hypertension in obese (men p < 0.001, OR = 1.471, 1.087–1.991, women p < 0.001, OR = 1.422, 1.104–1.833) and overweight patients (men p < 0.0001, OR = 1.901, 95% CI: 1.463–2.470, women p < 0.0001, OR = 1.647, 95% CI: 1.304–2.080). Conclusions Weight loss is inversely associated and weight increase is positively associated with the probability of uncontrolled hypertension in obese and overweight hypertensives.
    Keywords Obesity ; Weight loss ; Weight gain ; Arterial hypertension ; Medicine ; R
    Language English
    Publishing date 2017-10-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top