LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: NLRP3 and Gut Microbiota Homeostasis

    Hongming Pan / Yuting Jian / Feijie Wang / Shaokun Yu / Jiannan Guo / Juntao Kan / Wei Guo

    Cells, Vol 11, Iss 3758, p

    Progress in Research

    2022  Volume 3758

    Abstract: The inflammasome is a platform for inflammatory signaling, and the NLRP3 inflammasome recognizes stimuli in vitro and in vivo, and releases inflammatory cytokines that trigger inflammation and pyroptosis. In the gut, the NLRP3 inflammasome is a key ... ...

    Abstract The inflammasome is a platform for inflammatory signaling, and the NLRP3 inflammasome recognizes stimuli in vitro and in vivo, and releases inflammatory cytokines that trigger inflammation and pyroptosis. In the gut, the NLRP3 inflammasome is a key sensor for protecting the body from damage and exogenous pathogens. It plays a fundamental role in maintaining the stability of the gut’s immune system. We focus on the role of NLRP3 as a key node in maintaining the homeostasis of gut microbiota which has not been fully highlighted in the past; gut microbiota and innate immunity, as well as the NLRP3 inflammasome, are discussed in this article.
    Keywords NLRP3 ; microbiota ; intestinal mucosal immunity ; inflammasome ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: An identified PfHMGB1 promotes microcystin-LR-induced liver injury of yellow catfish (Pelteobagrus fulvidraco)

    Yun Wang / Xiaoxue Xiao / Feijie Wang / Zupeng Yang / Jingkai Yue / Jiale Shi / Fei Ke / Zhaohui Xie / Yanru Fan

    Ecotoxicology and Environmental Safety, Vol 207, Iss , Pp 111266- (2021)

    2021  

    Abstract: Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of ... ...

    Abstract Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of juvenile yellow catfish (Pelteobagrus fulvidraco) that were intraperitoneally injected with 50 μg/kg MC-LR. The PfHMGB1 mRNA level was highest in the liver and muscle among 11 tissues examined. The full-length cDNA sequence of PfHMGB1 was cloned and overexpressed in E. coli, and the purified protein rPfHMGB1 demonstrated DNA binding affinity. Endotoxin-free rPfHMGB1 (6–150 μg/mL) also showed dose-dependent hepatotoxicity and induced inflammatory gene expression of primary hepatocytes. PfHMGB1 antibody (anti-PfHMGB1) in vitro reduced MC-LR (30 and 50 μmol/L)-induced hepatotoxicity, suggesting PfHMGB1 is important in the toxic effects of MC-LR. In vivo study showed that MC-LR upregulated PfHMGB1 protein in the liver. The anti-PfHMGB1 blocked its counterpart and reduced ALT/AST activities after MC-LR exposure. Anti-PfHMGB1 partly neutralized MC-LR-induced hepatocyte disorganization, nucleus shrinkage, mitochondria, and rough endoplasmic reticula destruction. These findings suggest that PfHMGB1 promotes MC-LR-induced liver damage in the yellow catfish. HMGB1 may help protect catfish against widespread microcystin pollution.
    Keywords PfHMGB1 ; MC-LR ; Hepatotoxicity ; Liver injury ; Yellow catfish ; anti-PfHMGB1 ; Environmental pollution ; TD172-193.5 ; Environmental sciences ; GE1-350
    Subject code 570 ; 610
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Low skeletal muscle mass is associated with arterial stiffness in community-dwelling Chinese aged 45 years and older

    Mingzhe Yang / Xuguang Zhang / Zhenkai Ding / Feijie Wang / Yufang Wang / Changya Jiao / Jie-Hua Chen

    BMC Public Health, Vol 20, Iss 1, Pp 1-

    2020  Volume 9

    Abstract: Abstract Background Evidence suggests that body composition has impact on arterial stiffness. However, evidence in Chinese are limited, and results remain controversial. The aim of our study is to investigate whether skeletal muscle mass is associated ... ...

    Abstract Abstract Background Evidence suggests that body composition has impact on arterial stiffness. However, evidence in Chinese are limited, and results remain controversial. The aim of our study is to investigate whether skeletal muscle mass is associated with arterial stiffness in Chinese community-dwelling men and women aged 45 years and older. Methods In this cross-sectional study, 20,477 participants (age range: 45–80 years, 68.8% women) were included in the analysis. Brachial-ankle pulse wave velocity (baPWV), an indicator of arterial stiffness was measured using a waveform device. Total muscle mass and muscle mass of arm, leg and trunk were measured by bioelectrical impedance analysis. Height and weight were measured and appendicular skeletal muscle mass index (ASMI) was calculated as appendicular skeletal muscle mass (sum of arm and leg muscle mass) divided by height square. Results After adjustment for age, body fat percentage, systolic blood pressure and diastolic blood pressure, ASMI was negatively associated with baPWV [β (SE) for men: − 0.208 (0.016), p < 0.0001; for women: − 0.245 (0.012), p < 0.0001]. High ASMI was a protective factor for the presence of arterial stiffness (defined as baPWV) [OR (95%CI) for men: 0.730 (0.682, 0.782), p < 0.0001; women: 0.634 (0.593, 0.677), p < 0.0001]. Similar associations were found between quantity of muscle mass (total and appendicular muscle mass, muscle mass of arm, leg and trunk) and arterial stiffness in men and women after further adjustment for height (all p < 0.0001). Conclusion Low skeletal muscle mass is associated with increased risk of arterial stiffness in Chinese community-dwelling adults aged 45 years and older.
    Keywords Skeletal muscle mass ; Body composition ; Pulse wave velocity ; Arterial stiffness ; Public aspects of medicine ; RA1-1270
    Subject code 796 ; 610
    Language English
    Publishing date 2020-02-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top